K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2019

x^2 -4x+5+y^2+2y

=(x^2-4x+4)+(y^2+2y +1)

=(x-2)^2+(y+1)^2

vì (x-2 )^2 >= 0

(y+1)^2>=0

=)) (x-2)^2 +(y+1)^2 >=0

dấu "=" xảy ra 

<=>x-2 =0 =)x=2

và y+1=0 =)y=-1

vậy..........

28 tháng 10 2019

H = x2 - 4x + 5 + y2 + 2y

H = ( x- 4x + 4) + ( y+ 2y + 1 ) 

H = ( x - 2 )2 + ( y + 1 )\(\ge\)0

Dấu = xảy ra\(\Leftrightarrow\)x - 2 = 0 và y + 1 = 0

                        \(\Rightarrow\)x = 2 và y = - 1

Vậy : Min H = 0 \(\Leftrightarrow\)x = 2 và y = - 1

28 tháng 10 2019

Ta có: A = x2 + 2y2 + 9z2 - 2x + 12y + 6z + 24

A = (x2 - 2x + 1) + 2(y2 + 6y + 9) + (9z2 + 6z + 1) + 4

A = (x - 1)2 + 2(y + 3)2 + (3z + 1)2  + 4 \(\ge\)\(\forall\)x;y;z

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1=0\\y+3=0\\3z+1=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=-3\\z=-\frac{1}{3}\end{cases}}\)

Vậy MinA = 4 <=> x=  1 ; y = -3 và z = -1/3

28 tháng 10 2019

\(x^2+2y^2+9z^2-2x+12y+6z+24\)

\(=\left(x^2-2x+1\right)+\left(9z^2+6z+1\right)+\left(2y^2+12y+22\right)\)

\(=\left(x-1\right)^2+\left(3z+1\right)^2+2\left(y^2+6y+11\right)\)

\(=\left(x-1\right)^2+\left(3z+1\right)^2+2\left(y^2+6y+9+2\right)\)

\(=\left(x-1\right)^2+\left(3z+1\right)^2+2\left(y+3\right)^2+4\ge4\)

Dấu '' = '' xảy ra khi \(\Leftrightarrow\hept{\begin{cases}x-1=0\\3z+1=0\\y+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\z=-\frac{1}{3}\\y=-3\end{cases}}}\)

Vậy................................

28 tháng 10 2019

điều kiện n phải lớn hơn hoặc bằng 5 thì mới chia hết

28 tháng 10 2019

Vẽ ra phía ngoài hình vuông 1 tam giác đều ABE. Vì EA=EB; MA=MB nên EM là đường trung trực AB, suy ra ˆMEB=30∘
VÌ ΔEBM=ΔCBM(c.g.c), suy raˆMCB=ˆMEB=30∘⇒ˆMCD=60∘(1).
Mặt khác, ΔAMD=ΔBMC(c.g.c), suy ra: MD=MC (2)
Từ (1) & (2) =>ΔMCDđều (đpcm)

A B C D J S M x y

tam giác AMD= BMC (c-g-c)

trên nửa mặt phẳng bờ AD chứa BC kẻ Ax và Dy sao cho Ax, Dy tạo vs AD các góc 15 độ, chứng cắt nhau tại J

Tam giác AJD có góc DAJ=JDA=15 

=> t,g ADJ cân tại J

ta có t.g AJDJ= ABM (g-c-g)

=>AJ=AM  

=> t.g AMJ cân tại A mà MAJ=60 (DAJ+JAM+MAB=90)

=> t.g ẠM đều 

=>JA=JM

ta có MJS=AMJ+MAJ=60+60=120 (góc ngoài t.g)

tương tự ta có SJD=30

vậy MJD=SJM+SJD=120+30=150

lại có t.g JDM có JD=JM (cùng= JA)

=> JDM cân tại J mà góc MJD=120

=>JDM=15

ta có góc ADJ + JDM+MDC=90

                 15+15+mdc=90

                              MDC =60

tam giác MCD cân mà có góc D =60 

=> MCD là tam giác đều

28 tháng 10 2019

Ta có: A = 2x2 + 4x + 5 = 2(x2 + 2x + 1) + 3 = 2(x + 1)2 + 3 \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x + 1 = 0 <=> x = -1

Vậy MinA = 3 <=> x = -1

28 tháng 10 2019

\(2x^2+4x+5\)

\(=2\left(x^2+2x+\frac{5}{2}\right)\)

\(=2\left(x^2+2x+1+\frac{3}{2}\right)\)

\(=2\left[\left(x+1\right)^2+\frac{3}{2}\right]\)

\(=2\left(x+1\right)^2+3\ge3\)

Dấu '' = '' xảy ra khi 

\(\Leftrightarrow2\left(x+1\right)^2=0\)

\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Vậy............................

P/s : sai thì thôi nha

28 tháng 10 2019

A = 5x+ 5y+ 2xy + 8x + 16y + 5

A = ( x+ 2xy + y) + ( 4x+ 8x + 4 ) + ( 4y2 + 16y + 16 ) - 15

A = ( x + y )+ ( 2x + 2 )2 + ( 2y + 4 )2 - 15 \(\le\)-  15

Dấu = xảy ra \(\Leftrightarrow\)2x + 2 = 0 ; 2y + 4 = 0

                         \(\Rightarrow\)x = - 1 và y = - 2

Max A = - 15 \(\Leftrightarrow\)x = - 1 và y = - 2