chứng minh rằng ba đường trung bình của tam giác chia tam giác đó thành 4 tam giác bằng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B A I E C F K
a) Xét \(\Delta BAE\)và \(\Delta BFE\)có
\(\widehat{ABE}=\widehat{FBE}\)(gt)
BE chung
=>\(\Delta BEA\)=\(\Delta BEF\)(cạnh huyền-góc nhọn)
=> EA=EF ( 2 cạnh tương ứng)
=> BA=BF(2 cạnh tương ứng)
Xét \(\Delta BKA\)và \(\Delta BKF\)có:
BA = BF (cmt)
\(\widehat{ABK}=\widehat{FBK}\left(gt\right)\)
BK chung
=> \(\Delta BKA\)=\(\Delta BKF\)(c.g.c)
=> AK = KF (2 cạnh tương ứng) (1)
=>\(\widehat{AKB}=\widehat{FKB}\)(2 góc tương ứng)
Mà 2 góc lại kề bù =>\(\widehat{AKB}=\widehat{FKB}=90^o\)(2)
Từ (1),(2)=> đpcm
b) Xét \(\Delta BAC\)và \(\Delta BFI\)có
BA = BF(a)
\(\widehat{B}\)chung
\(\widehat{BAE}=\widehat{BFE}=90^o\)
=> \(\Delta BAC\)=\(\Delta BFI\)(g.c.g)
Xét \(\Delta EAI\)và \(\Delta EFC\)có:
\(\widehat{AEI}=\widehat{FEC}\)(đối đỉnh)
EA = EF( a)
\(\widehat{EAI}=\widehat{CFE}=90^o\)
=> \(\Delta EAI\)= \(\Delta EFC\)(g.c.g)
=> EI=EC.
a) xét \(\Delta ABC\)CÓ
\(BC^2=10^2=100\)
\(AB^2+AC^2=6^2+8^2=36+64=100\)
VÌ \(100=100\)
\(\Rightarrow BC^2=AB^2+AC^2\)
VẬY \(\Delta ABC\) VUÔNG TẠI A
trong tam giác ABC ta có :
AB2=62=36
AC2=82=64
BC2=102=100
ta thấy : 100=36+64 => BC2=AC2=AB2( định lý pytago đảo )
=> tam giác ABC vuông tại A
CHÚC BẠN HỌC TỐT !!!
Bài làm:
\(\frac{3}{200}-\frac{3}{110}-\frac{3}{90}-\frac{3}{72}-\frac{3}{56}-...-\frac{3}{2}\)
\(=\frac{3}{200}-3\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{110}\right)\)
\(=\frac{3}{200}-3\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{10.11}\right)\)
\(=\frac{3}{200}-3\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}\right)\)
\(=\frac{3}{200}-3\left(1-\frac{1}{11}\right)\)
\(=\frac{3}{200}-\frac{30}{11}=-\frac{5967}{2200}\)
Học tốt!!!!
Ta có :
2xy + x - 2y = 4
\(\Rightarrow\) 2y ( x - 1 ) + x = 4
\(\Rightarrow\) 2y ( x - 1 ) + x - 1 = 3
\(\Rightarrow\) 2y ( x - 1 ) + ( x - 1 ) = 3
\(\Rightarrow\) ( x - 1 ) . ( 2y + 1 ) = 3
\(\Rightarrow\) x - 1 và 2y + 1 là Ư(3) = { - 3 ; - 1 ; 1 ; 3 }
Ta có bảng :
x - 1 | - 1 | - 3 | 1 | 3 |
2y + 1 | - 3 | - 1 | 3 | 1 |
x | 0 | - 2 | 2 | 4 |
y | - 2 | - 1 | 1 | 0 |
Vậy ...
2xy+x-2y=4
x(2y+1)-2y=4
x(2y+1)-2y-1=3
x(2y+1)-(2y+1)=3
(x-1)(2y+1)=3
Vì x;y là số nguyên => x-1;2y+1 là số nguyên
=> x-1;2y+1 Ư(3)
Ta có bảng:
x-1 | 1 | 3 | -3 | -1 |
2y+1 | 3 | 1 | -1 | -3 |
x | 2 | 4 | -2 | 0 |
y | 1 | 0 | -1 | -2 |
Vậy cặp số nguyên (x;y) cần tìm là: (2;1) ; (4;0) ; (-2;-1) ; (0;-2).
-trường hợp c-g-c là 2 cạnh kề với 1 góc.
- trường hợp g.c.g là 2 góc kề với 1 cạnh.
- trường hợp ch-gn là cạnh huyền kề với một góc .
chúc bạn học tốt !!!
Bài làm
a) Xét tam giác ABM có:
MK là đường trung trực
=> MB = MA ( tính chất đường trung trực )
=> Tam giác ABM cân tại M
b) Vì MK vuông góc AB
CB vuông góc AB
=> MK // CB
=> ^AMK = ^MCB ( đồng vị ). (1)
Vì tam giác ABM cân tại M
Mà MK là trung trực
=> MK là phân giác
=> ^AMK = ^BMK. (2)
Từ (1) và (2) => ^BMK = ^MCB. (3)
Vì tam giác BMK vuông tại K
=> ^BMK + ^MBK = 90°
Vì tam giác ABC vuông tại A
=> ^MBK + ^MBC = 90°
=> ^BMK = ^MBC. (4)
Từ (3) và (4) => ^MBC = ^MCB
bài làm
c) Xét tam giác BIA có:
AH vuông góc với BI
IK vuông góc với AB
Mà AH và IK cắt nhau ở M
=> M là trực tâm
=> BM vuông góc với IA ( đpcm )
d) Xét tam giác HMB và tam giác EMA có:
^MHB = ^MEA = 90°
Cạnh huyền: BM = AM ( cmt )
Góc nhọn: ^HMB = ^EMA ( đối )
=> Tam giác HMB = tam giác EMA ( ch-gn )
=> HM = ME
=> Tam giác MHE cân tại M
=> ^MHE = ^MEH
Xét tam giác MHE có:
^HME + ^MHE + ^MEH = 180°
=> ^HME + 2^MHE = 180°
=> 2^MHE = 180° - ^HME. (5)
Xét tam giác ABM cân tại M có:
^BMA + ^MBA + ^MAB = 180°
=> ^BMA + 2^MAB = 180°
=> 2^MAB = 180° - ^BMA. (6)
Mà ^HME = ^BMA ( đối ). (7)
Từ (5) và (6) và (7) => 2^MHE = 2^MAB
=> ^MHE = ^MAB
Mà hai góc này ở vị trí so le le trong
=> HE // AB
A B C D E I H 1 2 1 2 1 1 2 1
a) Từ I kẻ IH vuông góc với BC
Xét t/giác BID và BIH
có: \(\widehat{B_1}=\widehat{B_2}\)(gt)
BI: chung
\(\widehat{BDI}=\widehat{BHI}=90^0\)
=> t/giác BID = t/giác BID (ch.gn)
=> DI = IH (2 cạnh t/ứng) (1)
CMTT: t/giác ECI = t/giác HCI (ch - gn)
=> EI = IH (2)
Từ (1) và (2) => DI = IE
Nối A và I
TA có: AH // IE (vì cùng vuông góc với AC) => \(\widehat{DAI}=\widehat{AIE}\)(slt)
Xét t/giác DAI và t/giác EIA
có: IA : chung
\(\widehat{ADI}=\widehat{IEA}=90^0\)(gt)
\(\widehat{DAI}=\widehat{AIE}\)(cmt)
=> t/goác DAI = t/giác EIA (ch - gn)
=> DI = EA; AD = EI (các cặp cạnh tương ứng)
mà DI = EI (cmt)
=> AE = AD (đpcm)
b) Xét t/giác ABC vuông tại A, ta có:
BC2 = AB2 + AC2 (định lí Pi - ta - go)
=> BC2 = 62 + 82 = 100
=> BC = 10 (cm)
Ta có: t/giác BID = t/giác BIH (cmt) => BD = BH (2 cạnh t/ứng)
t/giác CIE = t/giác CIH (cmt) => CH = EC (2 cạnh t/ứng)
=> BD + EC = DH + HC = BC = 10 cm
Ta lại có: AB + AC = BD + AD + AE + EC = (BD + EC) + 2AD = 6 + 8
=> 2AD + 10 = 14
=> 2AD = 4 => AD = AE = 2 cm
A B C I D E K
a) Vì I là giao điểm của phân giác \(\widehat{B}\)và \(\widehat{C}\)
=> AI là phân giác \(\widehat{A}\)
=> ID=IE (1)
\(\Delta ADI\)và \(\Delta AEI\)vuông cân
=> ID=AD; IE=AE (2)
Từ (1)(2) => ED=AE (đpcm)
b) Hạ IK _|_ BC; ID _|_ AB; IE _|_ AC
=> BD=BK; CK=CE; AD=AE
\(\Delta ABC\)vuông tại A có AB=6cm; AC=8cm. Áp dụng định lý Pytago ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow BC=\sqrt{6^2+8^2}=\sqrt{36+64}=\sqrt{100}=10\left(cm\right)\)
Đặt AD=x => BK=6-x; CK=8-c
=> 6-x+8-x=10
=> x=2
Vậy AD=2cm
A B C M N H E D I I
Xét \(\Delta ABM\)và \(\Delta NDM\)có: \(\hept{\begin{cases}\widehat{A}=\widehat{DNM}=90^o\left(gt\right)\\MB=MD\left(gt\right)\\\widehat{AMB}=\widehat{NMD}\end{cases}}\Rightarrow\Delta ABM=\Delta NDM\left(ch-gn\right)\left(đpcm\right)\)
Ta có \(\widehat{ABM}=\widehat{NDM}\left(\Delta ABM=\Delta NDM\right)\)
\(\widehat{ABM}=\widehat{CBM}\)(BM là phân giác \(\widehat{B}\))
\(\Rightarrow\widehat{NDM}=\widehat{CBM}\)hay \(\widehat{EDB}=\widehat{EBD}\)
\(\Rightarrow\Delta BED\)cân tại E
=> BE=DE (đpcm)
Kẻ MH vuông góc với BC tại H
Ta có MH=MA (vì BM là tia phân giác của \(\widehat{B}\))
và MA=MN (\(\Delta ABM=\Delta NDM\))
=> MN=MH
Xét \(\Delta MHC\)vuông tại H có MH<MC (vì MC là cạnh huyền)
=> MN<MC (đpcm)
A B C D E F
có DF; EF là đường trung bình của tg ABC (gt)
=> DF // AC (đl) và EF // AB (đl)
=> ^AED = ^EDF và ^ADE = ^DEF (slt)
xét tg ADE và tg FED có : ED chung
=> tg ADE = tg FED (c-g-c)
tương tự với các tg còn lại nhé b
A B C M N P
ta có MN , MP là đường trung bình của tam giác ABC
\(\Rightarrow MP//AC;NP//AB\)
\(\Rightarrow\widehat{ANM}=\widehat{NMP};\widehat{AMN}=\widehat{MNP}\)
Xét tam giác AMN và tam giác PNM có
cạnh MN chung
Do đó ; tam giác AMN = tam giác PNM [ g.c.g ]
Ta làm tương tự xét 2 cặp tam giác còn lại để rút ra trong một tam giác ba đường trung bình chia tam giác ra làm 4 tam giác bằng nhau
Học tốt nhé