phân tích truyện ngắn chiếc lá cuối cùng
theo dàn ý sgk trang 19 lơp 8 tập 2
có miêu tả nội tâm nhân vật
có câu chủ đề khái quát mỗi đoạn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Thanh D nhiễm điện âm
b. Khi cọ xát đã có sự dịch chuyển electron từ mảnh vải sang thước nhựa D .
c. thanh D nhiễm điện tích âm => Thanh C nhiễm điện tích âm ( D đẩy C ) => thanh B mang điện tích dương ( B và C hút nhau ) => Thanh A mang điện tích dương ( A và B đẩy nhau )
a) \(A=\dfrac{2x^2-4x+8}{x^3+8}\left(x\ne-2\right)\\ =\dfrac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}\\ =\dfrac{2}{x+2}\)
b) Thay x=2 (TMDK) vào bt A:
\(A=\dfrac{2}{2+2}=\dfrac{2}{4}=\dfrac{1}{2}\)
c) \(A=\dfrac{2}{x+2}\inℤ\Rightarrow2⋮\left(x+2\right)\\ \Rightarrow x+2\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\\ \Rightarrow x\in\left\{-1;-3;0;-4\right\}\) (TMDK)
d) \(A=-\dfrac{3}{2}\\ \Rightarrow\dfrac{2}{x+2}=-\dfrac{3}{2}\\ \Rightarrow-3\left(x+2\right)=4\\ \Rightarrow-3x-6=4\\ \Rightarrow3x=-10\\ \Rightarrow x=-\dfrac{10}{3}\left(TMDK\right)\)
Vậy x=-10/3 thì A=-3/2
a: Sửa đề: x<>-2
\(A=\dfrac{2x^2-4x+8}{x^3+8}\)
\(=\dfrac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}\)
\(=\dfrac{2}{x+2}\)
b: Thay x=2 vào A, ta được: \(A=\dfrac{2}{2+2}=\dfrac{2}{4}=\dfrac{1}{2}\)
c: Để A là số nguyên thì \(x+2\inƯ\left(2\right)\)
=>\(x+2\in\left\{1;-1;2;-2\right\}\)
=>\(x\in\left\{-1;-3;0;-4\right\}\)
d: \(A=-\dfrac{3}{2}\)
=>\(\dfrac{2}{x+2}=\dfrac{-3}{2}\)
=>\(x+2=-\dfrac{4}{3}\)
=>\(x=-\dfrac{4}{3}-2=-\dfrac{10}{3}\)
a: \(\dfrac{x}{3}-\dfrac{2x+1}{2}=\dfrac{x}{6}-x\)
=>\(\dfrac{2x-3\left(2x+1\right)}{6}=\dfrac{x-5x}{6}\)
=>\(2x-3\left(2x+1\right)=-4x\)
=>\(2x-6x-3=-4x\)
=>-3=0(vô lý)
=>\(x\in\varnothing\)
b: -2(y+3)-5=y+4
=>-2y-6-5=y+4
=>-2y-11=y+4
=>\(-2y-y=4+11\)
=>-3y=15
=>\(y=\dfrac{15}{-3}=-5\)
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{EAB}\) chung
Do đó: ΔAEB~ΔAFC
b: ta có: ΔAEB~ΔAFC
=>\(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)
=>\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
\(\widehat{EAF}\) chung
Do đó: ΔAEF~ΔABC
=>\(\widehat{AEF}=\widehat{ABC}\)
c: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)
Do đó; ΔHFB~ΔHEC
=>\(\dfrac{HF}{HE}=\dfrac{HB}{HC}\)
=>\(\dfrac{HF}{HB}=\dfrac{HE}{HC}\)
Xét ΔHFE và ΔHBC có
\(\dfrac{HF}{HB}=\dfrac{HE}{HC}\)
\(\widehat{FHE}=\widehat{BHC}\)(hai góc đối đỉnh)
Do đó: ΔHFE~ΔHBC
Sửa đề: \(x^2-11x-12=0\)
=>\(x^2-12x+x-12=0\)
=>(x-12)(x+1)=0
=>\(\left[{}\begin{matrix}x=12\\x=-1\end{matrix}\right.\)
- Xác định trường thi cấp 3.
- Xác định kết quả thi học kì I.
- Xác định công việc sẽ làm khi học đại học.