A = 4x2 – 5xy + 3y2;
B = 3x2 +2xy + y2;
C = - x2 + 3xy + 2y2
Tính: A + B + C; B – C – A; C- A – B.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi tiền lãi tổ 1 và tổ 2 chia được lần lượt là a,b ( đồng)
Theo bài ra ta có:
\(\frac{a}{b}=\frac{3}{5}\)\(\Rightarrow\frac{a}{3}=\frac{b}{5}\)
Vì tổng số lãi là 12 800 000 đồng nên a + b = 12 800 000
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{3}=\frac{b}{5}=\frac{a+b}{3+5}=\frac{12800000}{8}=1600000\)
\(\Rightarrow\)\(a=1600000.3=4800000\)
\(b=1600000.5=8000000\)
Độ dài đường kính hình tròn là: \(\sqrt{a^2+a^2}=a\sqrt{2}\)
Độ dài bán kính hình tròn là: \(\frac{a\sqrt{2}}{2}\)
Diện tích hình tròn là: \(\pi.\left(\frac{a\sqrt{2}}{2}\right)^2=\frac{a^2}{2}.3,14=1,57a^2\).
Ta có \(\frac{a+11}{a}=1+\frac{11}{a}\)
Để x \(\inℤ\Leftrightarrow\frac{11}{a}\inℤ\Leftrightarrow11⋮a\Leftrightarrow a\inƯ\left(11\right)\)
=> \(a\in\left\{1;-11;-1;11\right\}\)
Vây \(a\in\left\{1;-11;-1;11\right\}\) thì x nguyên
Để \(\frac{a+11}{a}\)là một số nguyên
Vậy \(\Rightarrow\)\((a+11)⋮a\)
Mà a\(⋮\)a
\(\Rightarrow\)11 \(⋮\)a
Để 11 chia hết cho a thì a phải là ước của 11 \(\Leftrightarrow\)Ư (11) = 1, 11 , -11 , -1
\(\Rightarrow a=1,11,-11,-1\)
Ta có : \(\frac{1}{x}+\frac{1}{y}=\frac{1}{2}\)\(\left(x;y\ne0\right)\)
=> \(\frac{x+y}{xy}=\frac{1}{2}\)
=> 2(x + y) = xy
=> 2x + 2y = xy
=> xy - 2x - 2y = 0
=> xy - 2x - 2y + 4 = 4
=> x(y - 2) - 2(y - 2) = 4
=> (x - 2)(y - 2) = 4
Lập bảng xét các trường hợp
x - 2 | 1 | 4 | -4 | -1 | 2 | -2 |
y - 2 | 4 | 1 | -1 | -4 | 2 | -2 |
x | 3 | 6 | -2 (loại) | 1 | 4 | 0(loại) |
y | 6 | 3 | 1 | -2(loại) | 4 | 0(loại) |
Vậy các cặp (x;y) thỏa mãn là (3;6) ; (6;3) ; (4;4)
\(\frac{298}{401}>\frac{298}{409}>\frac{289}{409}\)
\(\frac{298}{401}>\frac{289}{409}\)
\(-\frac{298}{401}< -\frac{289}{409}\)
\(\frac{-17}{26}\) < \(\frac{-16}{27}\)
HOK TOT~
-17/26 < -16/27
Ta có :
\(A+B+C\Rightarrow4x^2-5xy+3y^2+3x^2+2xy+y^2-x^2+3xy+2y^2=6x^2+6y^2\)
\(B-C-A\Rightarrow3x^2+2xy+y^2+x^2-3xy-2y^2-4x^2+5xy-3y^2=4xy-4y^2\)
\(C-A-B\Rightarrow-x^2+3xy+2y^2-4x^2+5xy-3y^2-3x^2-2xy-y^2=-8x^2+6xy-2y^2\)
Ta có A + B + C = 4x2 - 5xy + 3y2 + 3x2 + 2xy + y2 - x2 + 3xy + 2y2
= 6x2 + 6y2
B - C - A = 3x2 + 2xy + y2 - (x2 + 3xy + 2y2) - (4x2 - 5xy + 3y2)
= 3x2 + 2xy + y2 - x2 - 3xy - 2y2 - 4x2 + 5xy - 3y2
= -2x2 + 4xy - 4y2
C - A - B = x2 + 3xy + 2y2 - (4x2 - 5xy + 3y2) - (3x2 + 2xy + y2)
= x2 + 3xy + 2y2 - 4x2 + 5xy - 3y2 - 3x2 - 2xy - y2
= -6x2 + 6xy - 2y2
Trả lời:
A = 4x2 - 5xy + 3y2
B = 3x2 + 2xy + y2
C = - x2 + 3xy + 2y2
=> A + B + C = 4x2 - 5xy + 3y2 + 3x2 + 2xy + y2 + ( - x2 + 3xy + 2y2 )
= 4x2 - 5xy + 3y2 + 3x2 + 2xy + y2 - x2 + 3xy + 2y2
= 6x2 + 6y2
=> B - C - A = 3x2 + 2xy + y2 - ( - x2 + 3xy + 2y2 ) - ( 4x2 - 5xy + 3y2 )
= 3x2 + 2xy + y2 + x2 - 3xy - 2y2 - 4x2 + 5xy - 3y2
= 4xy - 4y2
=> C - A - B = - x2 + 3xy + 2y2 - ( 4x2 - 5xy + 3y2 ) - ( 3x2 + 2xy + y2 )
= - x2 + 3xy + 2y2 - 4x2 + 5xy - 3y2 - 3x2 - 2xy - y2
= - 8x2 + 6xy - 2y2