Giải pt:
\(2\sqrt[3]{\frac{2x-3}{1-x}}+\sqrt[3]{\frac{1-x}{2x-3}=3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\left(x^2+1\right)\left(x^2+y^2\right)\ge2\sqrt{x^2}.2\sqrt{x^2y^2}=2x.2xy=4x^2y\) ( Cosi )
\(VT\ge0\)\(\Rightarrow\)\(VP=4x^2y\ge0\)\(\Rightarrow\)\(y\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x^2=1\\x^2=y^2\end{cases}\Leftrightarrow x=y=1}\) ( vì \(y\ge0\) )
...
\(P^2=\frac{x^2y^2}{z^2}+\frac{y^2z^2}{x^2}+\frac{z^2x^2}{y^2}+2.\left(\frac{xy.yz}{zx}+\frac{yz.zx}{xy}+\frac{zx.xy}{zy}\right)\)
\(=\frac{x^2y^2}{z^2}+\frac{y^2z^2}{x^2}+\frac{z^2x^2}{y^2}+2.2016\)
Áp dụng BĐT Cauchy:\(\frac{x^2y^2}{z^2}+\frac{y^2z^2}{x^2}\ge2\sqrt{\frac{x^2y^2}{z^2}.\frac{y^2z^2}{x^2}}=2y^2\)
\(\frac{y^2z^2}{x^2}+\frac{z^2x^2}{y^2}\ge2\sqrt{\frac{y^2z^2}{x^2}.\frac{z^2x^2}{y^2}}=2z^2\)
\(\frac{z^2x^2}{y^2}+\frac{x^2y^2}{z^2}\ge2\sqrt{\frac{x^2z^2}{y^2}.\frac{x^2y^2}{z^2}}=2x^2\)
Cộng theo vế ta được:\(2\left(\frac{x^2y^2}{z^2}+\frac{y^2z^2}{x^2}+\frac{z^2x^2}{y^2}\right)\ge2x^2+2y^2+2z^2=2.2016\)
\(\Rightarrow\frac{x^2y^2}{z^2}+\frac{y^2z^2}{x^2}+\frac{z^2x^2}{y^2}\ge2016\)
\(\Rightarrow P^2\ge2016+2016.2=6048\Rightarrow P\ge\sqrt{6048}=12\sqrt{42}\)
Nên GTNN của P là \(12\sqrt{42}\) đạt được khi \(x=y=z=\sqrt{\frac{2016}{3}}=4\sqrt{42}\)
a) Để hàm số đồng biến thì m - 1 > 0
<=> m > 1
b) Gọi M ( x0 ; y0 ) là điểm cố định của d
y0 = ( m -1 ) x0 - 2m + 1 ( đúng vs mọi m )
mx0 - x0 - 2m + 1 - y0 = 0
( x0 - 2 ) m - x0 + 1 - y0 = 0
\(\hept{\begin{cases}x_0-2=0\\-x_0+1-y_0=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2_0\\-2+1-y_0=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x_0=2\\y_0=-1\end{cases}}\)
Vậy điểm cố định là M có tọa độ M(2;-1)