Cho nửa đường tròn (O) đường kính AB. Vẽ các tiếp tuyến Ax,By vè nửa mặt phẳng bờ AB chứa nửa đường tròn. Trên Ax và By theo thứ tự lấy M và N sao cho gsc MON bằng 90°.
Gọi I là trung điểm của MN. Chứng minh rằng :
a) AB là tiếp tuyến của đường tròn (I;IO)
b) MO là tia phân giác của góc AMN
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CC
2
PT
1
24 tháng 12 2018
Ta có
\(x^4+y^4=7z^4+5\Leftrightarrow x^4+y^4+z^4=8z^4+5\)
Áp dụng tính chất lũy thừa bậc 4 của số nguyên a khi chia cho 8 dư 0 hoặc 1
tức là \(a^4\equiv0,1\left(mod8\right)\)
\(\Rightarrow a^4+b^4+c^4\equiv0,1,2,3\left(mod8\right)\)
Mà \(8z^4+5\equiv5\left(mod8\right)\)
vậy pt k có nghiệm nguyên
DN
0
VH
0
VH
4
CV
21 tháng 12 2018
\(\left(x^2-6x+9\right)+\left(x-2\sqrt{3x}+9\right)=0\) (dk:x>=0)
\(\left(x-3\right)^2+\left(\sqrt{x}-3\right)^2=0\)
=>\(\hept{\begin{cases}x-3=0\\\sqrt{x}-3=0\end{cases}}\)
=>x=3 tmdk
a) Ax, By là các tiếp tuyến của đường tròn (O)
=> Ax // By (cùng vuông góc với AB)
=> AMNB là hình thang
Hình thang AMNB có: OA = OB; IM = IN
=> OI là đường trung bình
=> OI // AM // BN
Lại có: AM, BN vuông góc với AB
=> IO vuông góc với AB
=> AB là tiếp tuyến của đường tròn (I;IO)
b) Góc AMO = góc MOI (cùng phụ góc MOA) (1)
Tam giác MON vuông tại M có OI là đường trung tuyến
=> OI = MI = IN
=> tgiac MIO cân tại I
=> góc IMO = góc MOI (2)
Từ (1) và (2) => góc AMO = góc IMO
=> MO là phân gics góc AMN