n+2 chia hết cho n mũ 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số cá sau 1 tháng :
\(821.\left(1+2\%\right)\left(con\right)\)
Số cá sau 2 tháng :
\(821.\left(1+2\%\right)^2\left(con\right)\)
Số cá sau 6 tháng :
\(821.\left(1+2\%\right)^6\sim925\left(con\right)\)
Số cá sau 1 năm :
\(821.\left(1+2\%\right)^{12}\sim1041\left(con\right)\)
Số cá sau 10 năm :
\(821.\left(1+2\%\right)^{120}\sim8838\left(con\right)\)
Số cá sau 100 năm :
\(821.\left(1+2\%\right)^{1200}\sim1716126394284\left(con\right)\)
Vd như có 30 câu, bạn làm hết 30 câu mà thời gian chưa hết thì bạn phải đợi thời gian kết thúc hoặc người khác làm xong thì mới kết thúc vòng á bạn
Bạn làm hết rồi thì đợi nhé
`#3107.101107`
Gọi biểu thức trên là A
Ta có:
\(A=1+5^2+5^4+...+5^{40}\\ =1\cdot\left(1+5^2\right)+5^4\cdot\left(1+5^2\right)+...+5^{38}\cdot\left(1+5^2\right)\\ =\left(1+5^2\right)\cdot\left(1+5^4+...+5^{38}\right)\\ =26\cdot\left(1+5^4+...+5^{38}\right)\)
Vì \(26\cdot\left(1+5^4+...+5^{38}\right)\text{ }⋮\text{ }26\)
\(\Rightarrow A\text{ }⋮\text{ }26\)
_______
Gọi biểu thức trên là B
Ta có:
\(B=1+2^2+2^4+...+2^{100}\\ =1\cdot\left(1+2^2+2^4\right)+2^6\cdot\left(1+2^2+2^4\right)+...+2^{96}\cdot\left(1+2^2+2^4\right)\\ =\left(1+2^2+2^4\right)\cdot\left(1+2^6+...+2^{96}\right)\\ =21\cdot\left(1+2^6+...+2^{96}\right)\)
Vì \(21\cdot\left(1+2^6+...+2^{96}\right)\text{ }⋮\text{ }21\)
\(\Rightarrow B\text{ }⋮\text{ }21\)
_______
Gọi biểu thức trên là C
Ta có:
\(C=1+3^2+3^4+...+3^{100}\\ =1\cdot\left(1+3^2+3^4+3^6\right)+3^6\cdot\left(1+3^2+3^4+3^6\right)+...+3^{94}\cdot\left(1+3^2+3^4+3^6\right)\\ =\left(1+3^2+3^4+3^6\right)\cdot\left(1+3^6+...+3^{94}\right)\\ =820\cdot\left(1+3^6+...+3^{94}\right)\)
Vì \(820\cdot\left(1+3^6+...+3^{94}\right)\text{ }⋮\text{ }82\)
\(\Rightarrow C\text{ }⋮\text{ }82.\)
a) \(A=1+5^2+5^4+5^6...+5^{40}\)
\(\Rightarrow A=\left(1+5^2\right)+5^4\left(1+5^2\right)+...+5^{38}\left(1+5^2\right)\)
\(\Rightarrow A=26+5^4.26+...+5^{38}.26\)
\(\Rightarrow A=26\left(1+5^4+...+5^{38}\right)⋮26\)
\(\Rightarrow1+5^2+5^4+5^6...+5^{40}⋮6\left(dpcm\right)\)
b) \(B=1+2^2+2^4+2^6+...+2^{100}\)
\(\Rightarrow B=\left(1+2^2+2^4\right)+2^6\left(1+2^2+2^4\right)+...+2^{96}\left(1+2^2+2^4\right)\)
\(\Rightarrow B=21+2^6.21+...+2^{96}.21\)
\(\Rightarrow B=21\left(1+2^6+...+2^{96}\right)⋮21\)
\(\Rightarrow1+2^2+2^4+2^6+...+2^{100}⋮21\left(dpcm\right)\)
Bài C tương tự bạn tự làm nhé!
Nếu em hỏi trên olm mà người bên hoc24 trả lời cho em thì em sẽ không thấy câu trả lời em nhá
\(1+\left(x-1\right)^2+\left(x-1\right)^4+...+\left(x-1\right)^{2020}=\dfrac{17^{2022}-1}{\left(x-1\right)^2-1}\left(đk:x>2\right)\)
đặt
\(A=1+\left(x-1\right)^2+\left(x-1\right)^4+...+\left(x-1\right)^{2020}\)
\(\left(x-1\right)^2A=\left(x-1\right)^2+\left(x-1\right)^4+\left(x-1\right)^6+...+\left(x-1\right)^{2022}\)
\(\left(x-1\right)^2A-A=\left[\left(x-1\right)^2+\left(x-1\right)^4+\left(x-1\right)^6+...+\left(x-1\right)^{2022}\right]-\left[1+\left(x-1\right)^2+\left(x-1\right)^4+...+\left(x-1\right)^{2020}\right]\)
\(\left[\left(x-1\right)^2-1\right]A=\left(x-1\right)^{2022}-1\)
\(A=\dfrac{\left(x-1\right)^{2022}-1}{\left(x-1\right)^2-1}\)
\(=>\dfrac{\left(x-1\right)^{2022}-1}{\left(x-1\right)^2-1}=\dfrac{17^{2022}-1}{\left(x-1\right)^2-1}\\ =>\left(x-1\right)^{2022}-1=17^{2022}-1\\ =>\left(x-1\right)^{2022}=17^{2022}\\ =>x-1=17\\ =>x=18\left(tm\right)\)
ta có: 30=2 x 3x 5
45=32x5
ƯCLN(30,45)= 3x5= 15
vậy chi đc nhiều nhất 15 giỏ
mỗi giỏ có số quả táo là: 30 : 15=2
mỗi giỏ có số quả cam là: 45:15=3
Gọi số giỏ có thể chia được là x
\(\Rightarrow x\inƯC\left(30;45\right)\)
Mà: \(Ư\left(30\right)=\left\{1;2;3;5;6;10;15;30\right\}\)
\(Ư\left(45\right)=\left\{1;3;5;9;15;45\right\}\)
\(\RightarrowƯC\left(30,45\right)=\left\{1;3;5;15\right\}\)
Vậy có thể chia nhiều nhất thành 15 giỏ
Số quả cam khi chia 15 giỏ là: \(45:15=3\) (quả)
Số quả táo khi chia 15 giỏ là: \(30:15=2\) (quả)
Một hình chữ nhật có chiều dài 53m,chiều rộng 36m được chia thành những hình vuông có diện tích bằng nhau.Tính chiều dài cạnh hình vuông lớn nhất trong cách chia trên(số SDO cạnh là số tự nhiên với đơn vị là mét).
\(\left(x-3\right)^{x+3}-\left(x-3\right)^{x+1}=0\)
\(\left(x-3\right)^{x+1}\left[\left(x-3\right)^2-1\right]=0\)
\(\left(x-3\right)^{x+1}\left(x^2-6x+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x^2-6x+8=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\\x=2\end{matrix}\right.\)
Vậy \(S=\left\{2;3;4\right\}\)
\((x-3)^{x+3}-(x-3)^{x+1}=0\\\Rightarrow (x-3)^{x+1}[(x-3)^2-1]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-3\right)^{x+1}=0\\\left(x-3\right)^2-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\\left(x-3\right)^2=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x-3=1\\x-3=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=4\\x=2\end{matrix}\right.\)
#\(Toru\)
n + 2 ⋮ n2
⇒n(n + 2) \(⋮\) n2
n2 + 2n ⋮ n2
2n ⋮ n2
2 ⋮ n
n \(\in\) Ư(2) = { -2; -1; 1; 2}
Kết luận n \(\in\) { -2; -1; 1; 2}
n=2