Bên trong hình bình hành ABCD lấy một điểm E sao cho BC = BE.Chứng minh rằng CE vuông góc với đường thẳng nối trung điểm DE và AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác BHC có :
M là trung điểm BH(gt)
N là trung điểm HC(gt)
=> MN là đường trung bình tam giác BHC
=> MN // BC
mà AB vuông góc BC ( vì ^B =90'), gọi I là giao điểm MN và AB
=> MN vuông góc AB tai I => MN vuông IN vuông góc với AB
Xét tam giác ABN có M là giao điểm hai đường cao BH và IN
=> M là trực tâm
=> AM vuông góc BN (đpcm)
Mik chỉ vẽ đc hình thui
Còn bài thì mik chưa nghĩ ra
Thông cảm nha
Cho e sửa cái đề là Tính góc \(\widehat{ACK}\) và thêm cái điều kiện là \(AB>AC\)
Ta có
\(\frac{a^2-bc}{\left(a+b\right)\left(a+c\right)}=\frac{a^2+ab-bc-ab}{\left(a+b\right)\left(a+c\right)}=\frac{a\cdot\left(a+b\right)-b\cdot\left(c+a\right)}{\left(a+b\right)\left(c+a\right)}=\frac{a}{a+c}-\frac{b}{a+b}\left(1\right)\)
tương tự
\(\frac{b^2-bc}{\left(a+b\right)\left(b+c\right)}=\frac{b}{a+b}-\frac{c}{b+c}\left(2\right)\)
\(\frac{c^2-ab}{\left(c+a\right)\left(b+c\right)}=\frac{c}{c+b}-\frac{a}{a+b}\left(3\right)\)
Cộng (1);(2) và (3) ta có
\(\frac{a^2-bc}{\left(a+b\right)\left(a+c\right)}+\frac{b^2-ac}{\left(a+b\right)\left(b+c\right)}+\frac{c^2-ab}{\left(a+c\right)\left(c+b\right)}=\frac{a}{a+c}-\frac{b}{a+b}+\frac{b}{a+b}-\frac{c}{b+c}+\frac{c}{c+b}-\frac{a}{a+b}=0 \)