K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2020

\(\left(x+5\right)\sqrt{2x^2+1}=x^2+x-5\left(đk:x\ge0\right)\)

\(< =>x\sqrt{2x^2+1}-0+5\sqrt{2x^2+1}-5=x\left(x+1\right)\)

\(< =>\frac{x^2\left(2x^2+1\right)}{x\sqrt{2x^2+1}}+\frac{25\left(2x^2+1\right)-25}{5\sqrt{2x^2+1}+5}=x\left(x+1\right)\)

\(< =>\frac{x\left(2x^2+1\right)}{\sqrt{2x^2+1}}+\frac{25.2x^2}{5\left(\sqrt{2x^2+1}+1\right)}-x\left(x+1\right)=0\)

\(< =>x\left[\frac{2x^2+1}{\sqrt{2x^2+1}}+\frac{10x}{\sqrt{2x^2+1}+1}-x-1\right]=0< =>x=0\)

đánh giá cái ngoặc to to bằng đk là được , hoặc có nghiệm nữa thì giải luôn

4 tháng 1 2020

Áp dụng bđt AM-GM ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

\(a+b+c\ge3\sqrt[3]{abc}\)

Nhân 2 vế của đẳng thức trên ta được:

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

Áp dụng BDT svacxo ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{a+b+c}\)

Dấu = khi a=b=c

Học tốt

2 tháng 1 2020

viết lại đề bài đi bạn và mấy bài này thì làm sao là toán 10 dc

29 tháng 3 2020

Mik nhầm nhé lớp 6

2 tháng 1 2020

hơi dài

=72839052786184

2 tháng 1 2020

Câu trả lời:bằng 72751795381682 !

2 tháng 1 2020

https://olm.vn/thanhvien/chibiverycute là con chó