K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2020

Bài làm:

Ta có: \(P=\frac{2x-1}{x-1}=\frac{\left(2x-2\right)+1}{x-1}=2+\frac{1}{x-1}\)

Để P đạt GTLN

=> \(\frac{1}{x-1}\) đạt GTLN => \(x-1\) đạt giá trị dương nhỏ nhất

Mà x nguyên => x - 1 nguyên

=> \(x-1=1\Rightarrow x=2\)

Vậy Max(P) = 3 khi x = 2

7 tháng 8 2020

\(P=\frac{2x-1}{x-1}=\frac{2\left(x-1\right)+1}{x-1}=2+\frac{1}{x-1}\)( ĐKXĐ : x khác 1 )

Để P đạt GTLN => \(\frac{1}{x-1}\)đạt GTNN

=> x - 1 là số dương nhỏ nhất

=> x - 1 = 1

=> x = 2 ( tmđk )

Vậy PMax = \(2+\frac{1}{2-1}=2+1=3\), đạt được khi x = 2

Mình không chắc nha -.-

1. Cho tam giác ABC vuông cân tại A. M là trung điểm của BC. Lấy điểm D bất kì thuộc BC.(D khác B , C , M). Gọi H và I là thứ tự chân đường vuông góc kẻ từ B , C xuống đường thảng AD. Đường thẳng AM cắt CI tại N. CMR :a) BH song song CIb) BH = AIc) Tam giác HMI vuông cân2.Cho tam giác ABC có AB = AC = BC. M là trung điểm của BCa) CM : Tam giác AMB = Tam giác AMCb) Trên tia đối của tia MA lấy điểm N sao cho M là...
Đọc tiếp

1. Cho tam giác ABC vuông cân tại A. M là trung điểm của BC. Lấy điểm D bất kì thuộc BC.(D khác B , C , M). Gọi H và I là thứ tự chân đường vuông góc kẻ từ B , C xuống đường thảng AD. Đường thẳng AM cắt CI tại N. CMR :

a) BH song song CI

b) BH = AI

c) Tam giác HMI vuông cân

2.Cho tam giác ABC có AB = AC = BC. M là trung điểm của BC

a) CM : Tam giác AMB = Tam giác AMC

b) Trên tia đối của tia MA lấy điểm N sao cho M là trung điểm của AN. CM : Tam giác AMB = Tam giác NMC

c)Vẽ tia Ax vuông góc AM (AM thuộc nửa mặt phẳng bờ là đường thẳng AB chứa điểm C). Trên Ax lấy điểm P sao cho AP = AC. CM : P , N , C thẳng hàng.

3. Cho tam giác ABC vuông tại A , BD là tia phân giác của góc B ( D thuộc AC). Trên tia BC lấy điểm E sao cho BA = BE

a) CM : DE vuông góc BE

b) CM : BE là đường trung trực của AE.

c) Kẻ AH vuông góc BC. So sánh AH và EC

GIÚP MK VS NHA MN. BÀI HÌNH HỌC NÊN NHỜ MN VẼ HỘ MK CÁI HÌNH LUÔN NHA. mƠN MN NHÌU !!!!

2
7 tháng 8 2020

KHÔNG THẤY HÌNH THÌ VÀO THỐNG KÊ HỎI ĐÁP NHA

A) VÌ \(BH\perp AD\Rightarrow\widehat{BHA}=90^o\)

         \(CI\perp AD\Rightarrow\widehat{CID}=90^o\)

\(\Rightarrow\widehat{BHA}=\widehat{CID}=90^o\)hay \(\widehat{BHI}=\widehat{CIH}=90^o\)

HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU 

=> BH // CI (ĐPCM)

B) 

XÉT \(\Delta ABC\)VUÔNG TẠI A 

\(\Rightarrow\widehat{A}=90^o\)hay \(\widehat{BAH}+\widehat{HAC}=90^o\left(1\right)\)

XÉT \(\Delta AHB\)VUÔNG TẠI H

\(\Rightarrow\widehat{H}=90^o\)hay \(\widehat{BAH}+\widehat{ABH}=180^o-90^o=90^o\left(2\right)\)

từ (1) và (2) \(\Rightarrow\widehat{HAC}=\widehat{ABH}\)

XÉT \(\Delta ABH\)\(\Delta CAI\)

\(\widehat{H}=\widehat{I}=90^o\)

AB = AC (gt)

\(\widehat{ABH}=\widehat{IAC}\)(CMT)

=>\(\Delta ABH\)=\(\Delta CAI\)(C-G-C)

=> BH = AI ( HAI CẠNH TƯƠNG ỨNG )

7 tháng 8 2020

Ai giúp mk vs ạ

Bài 1 : Cho các đa thức :      f(x) = 2x4 – 3x2 – 2x4 + 4x3 – 2x + 3x – 15     g(x) = – 4x3 – 3x4 – 2x + x2 + 2 + 3x4 – 12Tính f(x) + g(x) và g(x) – f(x)Bài 2: Cho đơn thức A = a) Thu gọn Ab) Tìm bậc và phần hệ số của đơn thức ABài 3 a) Tìm đa thức M và bậc của M biết :M + 3x2y – 4xy2 + 5xy = 9x2y – 7xy + 6xy2b) Cho các đa thức :f(x) = 5x4 + 4x3 – 10x2 – 7x + 10 và g(x) = 4x4 + 5x2 – 9x – 8Tính f(x) +...
Đọc tiếp

Bài 1 : Cho các đa thức :

      f(x) = 2x4 – 3x2 – 2x4 + 4x3 – 2x + 3x – 15

     g(x) = – 4x3 – 3x4 – 2x + x2 + 2 + 3x4 – 12

Tính f(x) + g(x) và g(x) – f(x)

Bài 2: Cho đơn thức A =

a) Thu gọn A

b) Tìm bậc và phần hệ số của đơn thức A

Bài 3

a) Tìm đa thức M và bậc của M biết :

M + 3x2y – 4xy2 + 5xy = 9x2y – 7xy + 6xy2

b) Cho các đa thức :

f(x) = 5x4 + 4x3 – 10x2 – 7x + 10 và g(x) = 4x4 + 5x2 – 9x – 8

Tính f(x) + g(x)

Bài 4:  Cho các đa thức:

f(x) = 1 + 2x5 – 7x4 – 10x + 3x3   và  

g(x) = 5x2 – 9x5 + x  + 7 – 2x4 + 15x3

 a/ Sắp xếp các đa thức theo lũy thừa giảm của biến.

 b/ Tính f(x) + g(x) và g(x) – f(x)

Bài 5: Cho các đa thức sau:

P(x) = 5x – 7x4 + 8x3 – 2x2 – 4x3 + 6x4 – 9x +  

Q(x) = – 5x5 + 4x3 – 8x2 – 12x3 + 9x2 + 7

a/ Hãy thu gọn, sắp xếp các hạng tử của P(x), Q(x) theo lũy thừa giảm dần của biến x

b/ Tính P(x) + Q(x) và P(x) – Q(x)

2
7 tháng 8 2020

Bài 1 : 

Theo bài ra ta có : \(f\left(x\right)=2x^4-3x^2-2x^4+4x^3-2x+3x-15\)

\(=-3x^2+4x^3+x-15\)

\(g\left(x\right)=-4x^3-3x^4-2x+x^2+2+3x^4-12\)

\(=-4x^3-2x+x^2-10\)

\(f\left(x\right)+g\left(x\right)=-3x^2+4x^3+x-15-4x^3-2x+x^2-10\)

\(=-2x^2-x-25\)

\(g\left(x\right)-f\left(x\right)=-4x^3-2x+x^2-10+3x^2-4x^3-x+15\)

\(=-8x^3-3x+4x^2+5\)

Chị làm nốt mấy bài sau nhé, tương tự thôi

7 tháng 8 2020

Bài 3 : a) \(M+3x^2y-4xy^2+5xy=9x^2y-7xy+6xy^2\)

\(M=\left(9x^2y-7xy+6xy^2\right)-\left(3x^2y-4xy^2+5xy\right)\)

\(M=9x^2y-7xy+6xy^2-3x^2y+4xy^2-5xy\)

\(M=\left(9x^2y-3x^2y\right)+\left(-7xy-5xy\right)+\left(6xy^2+4xy^2\right)\)

\(M=6x^2y-12xy+10xy^2\)

=> bậc của M là 3

b.

f(x)                    = 5x4 + 4x3 - 10x2 - 7x + 10

g(x)                   = 4x4          + 5x2 - 9x - 8

f(x) + g(x)         = 9x4 + 4x3  - 5x2 - 16x + 2

Bài 4 : a.

f(x) = 2x5 - 7x4 + 3x3 - 10x + 1

g(x) = -9x5 - 2x4 + 15x3 + 5x2 + x + 7

b. f(x)                = 2x5 - 7x4 + 3x3           - 10x + 1

   g(x)                = -9x5 - 2x4 + 15x3 + 5x2 + x + 7

f(x) + g(x)         = -7x5 - 9x4 + 18x3 + 5x2 - 9x + 8

Trừ tương tự

Bài 5 cũng như bài 4

6 tháng 8 2020

Ta có\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{990}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+..+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{990}\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

6 tháng 8 2020

Đặt\(\frac{x+1}{3}=\frac{y-2}{5}=\frac{2z+14}{9}=k\Rightarrow\hept{\begin{cases}x=3k-1\\y=5k+2\\z=4,5k-7\end{cases}}\)

Lại có x + z = y 

=> 3k - 1 + 4,5k - 7 = 5k + 2

=> 3k + 4,5k - 5k = 2 + 1 + 7

=> 2,5k = 10

=> k = 4

Khi đó  x = 3.4 - 1 = 11

y = 5.4 + 2 = 22

z = 4,5.4 - 7 = 11

Vậy x = 11 ; y = 22 ; z = 11

6 tháng 8 2020

Ta có\(\frac{x}{-3}=\frac{y}{7}\Rightarrow\frac{x}{-3}.\frac{1}{-2}=\frac{y}{7}.\frac{1}{-2}\Rightarrow\frac{x}{6}=\frac{y}{-14}\left(1\right)\)

\(\frac{y}{-2}=\frac{z}{5}\Rightarrow\frac{y}{-2}.\frac{1}{7}=\frac{z}{5}.\frac{1}{7}\Rightarrow\frac{y}{-14}=\frac{z}{35}\left(2\right)\)

Từ (1)(2)

=> \(\frac{x}{6}=\frac{y}{-14}=\frac{z}{35}\)

=> \(\frac{-2x}{-12}=\frac{4y}{-56}=\frac{5z}{175}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{6}=\frac{y}{-14}=\frac{z}{35}=\frac{-2x}{-12}=\frac{4y}{-56}=\frac{5z}{175}=\frac{-2x-4y+5z}{-12+56+175}=\frac{146}{219}=\frac{2}{3}\)

=> \(\hept{\begin{cases}\frac{x}{6}=\frac{2}{3}\\\frac{y}{-14}=\frac{2}{3}\\\frac{z}{35}=\frac{2}{3}\end{cases}}\Rightarrow\hept{\begin{cases}x=4\\y=-\frac{28}{3}\\z=\frac{70}{3}\end{cases}}\)

7 tháng 8 2020

Bài làm:

Ta có: \(\frac{x}{-3}=\frac{y}{7}\Leftrightarrow\frac{x}{-6}=\frac{y}{14}\left(1\right)\)

và \(\frac{y}{-2}=\frac{z}{5}\Leftrightarrow\frac{y}{14}=\frac{z}{-35}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{x}{-6}=\frac{y}{14}=\frac{z}{-35}\)

Áp dụng t/c của dãy tỉ số bằng nhau ta được:

\(\frac{x}{-6}=\frac{y}{14}=\frac{z}{-35}=\frac{-2x-4y+5z}{12-56-175}=\frac{146}{-219}=-\frac{2}{3}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{-6}=-\frac{2}{3}\\\frac{y}{14}=-\frac{2}{3}\\\frac{z}{-35}=-\frac{2}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=-\frac{28}{3}\\z=\frac{70}{3}\end{cases}}\)

Vậy \(x=4\) ; \(y=-\frac{28}{3}\) và \(z=\frac{70}{3}\)

6 tháng 8 2020

\(\Leftrightarrow\frac{\left(100+1\right)\left[\left(100-1\right):1+1\right]}{2}=5050\)

\(\left(100+1\right).\left(\frac{100-1}{1}+1\right):2\)

\(=101.100:2\)

\(=5050\)

6 tháng 8 2020

a) Giờ thứ nhất ô tô đi được 120 x 1/2 = 60 km

Giờ thứ hai ô tô đi được : (120 - 60) x 2/5 = 24 km

Giờ thứ ba ô tô đi được 120 - 60 - 24 = 36 km

b) Quãng đường đi trong giờ thứ 3 chiếm 36 : 120 = 30% cả đoạn đường

A B C D K P

Mk vẽ hình không chuẩn cho lắm nhé !

Vẽ tam giác đều BPD sao cho P và A nằm trên cùng phía đối với BD .

Xét tam giác APB và tam giác APD có :

           cạnh AP chung

           AB = AD ( vì tam giác ABD là tam giác vuông cân )

           PB = PD ( vì tam giác BPD đều )

Do đó : tam giác APB = tam giác APD ( c.c.c )

=> góc APB = góc APD ( hai góc tương ứng )

mà góc APB + góc APD = 60độ

=> góc APB = góc APD = 30độ 

Ta có : góc ABP = góc PBD - góc ABD 

mà góc ABD = 45độ ( vì tam giác ABD vuông cân tại A )

=> góc ABP = 60độ - 45độ = 15độ

Ta lại có : góc KBD = góc ABD - góc ABK 

=> góc KBD = 45độ - 30độ = 15độ

Suy ra : góc ABP = góc KBD = 15độ 

Xét tam giác PAB và tam giác DKB có :

        PB = DB ( vì tam giác PBD đều )

        góc ABP = góc KBD = 15độ

       AB = KB 

Do đó : tam giác PAB = tam giác DKB ( c.g.c )

=> góc APB = góc KDB = 30độ 

Vì góc ADK = góc ADB - góc KBD 

=> góc ADK = 45độ - 30độ 

=> góc ADK = 15độ   ( 1 )

Tam giác ABK cân tại B ( vì BA = BK ) có góc ABK = 30độ nên góc BAK = 75độ

mà góc DAK = góc BAD - góc BAK 

=> góc DAK = 90độ - 75độ = 15độ   ( 2 )

Từ ( 1 ) và ( 2 ) suy ra : góc ADK = góc DAK = 15độ

=> tam giác AKD cân tại K 

Vậy KA = KD .