tìm x,y,z biết:
3/x -1 =4/y- 2 =5/z- 3 và xyz 192
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{3}^{2n-1}=243\)
\(< =>\frac{1}{3}^{n+n}=\frac{243}{3}=81\)
\(< =>\frac{1}{3^{n+n}}=81\)
\(< =>81.3^n.3^n=1\)
\(< =>3^{2n}=\frac{1}{81}\)
\(< =>3^{2n}=3^{-4}\)
\(< =>x=-2\)
Bài làm:
a) \(\left(\frac{1}{3}\right)^{2n-1}=243\)
\(\Leftrightarrow3^{1-2n}=3^5\)
\(\Rightarrow1-2n=5\)
\(\Leftrightarrow2n=-4\)
\(\Rightarrow n=-2\)
b) \(\left(0,125\right)^{n+1}=64\)
\(\Leftrightarrow\left(\frac{1}{8}\right)^{n+1}=8^2\)
\(\Rightarrow-n-1=2\)
\(\Rightarrow n=-3\)
Ta có:\(9^7+3^{13}=\left(9^2\right)^3.9+\left(3^4\right)^3.3=\overline{...1}.9+\overline{...1}.3=\overline{...9}+\overline{...3}=\overline{...2}\)
Vậy tổng trên có chứ số tận cùng là 2
Ta dễ dàng nhận thấy :
\(1^2>0;3^2>2^2;5^2>4^2;...;21^2>20^2\)
Cộng theo vế ta được :
\(1^2+3^2+5^2+...+21^2>0+2^2+4^2+...+20^2\)
Hay \(A>B\)
Ta có:A có số số hạng là:(21-1):2+1=11(số số hạng)
B có số số hạng là:(20-2):2+1=10(số số hạng)
Khi đó ta có:\(B-A=\left(2^2+4^2+...+20^2\right)-\left(1^2+3^2+...+21^2\right)\)
\(=\left(2^2-1^2\right)+\left(4^2-3^2\right)+...+\left(20^2-19^2\right)-21^2\)
\(=\left(1+2\right)\left(2-1\right)+\left(3+4\right)\left(4-3\right)+...+\left(19+20\right)\left(20-19\right)-21^2\)
\(=1+2+3+4+...+19+20-21^2=\frac{\left(1+20\right)20}{2}-21^2=21.10-21^2< 21^2-21^2=0\)
\(\Rightarrow B-A< 0\Rightarrow B< A\)
Vậy B<A
Hằng đẳng thức đó bn:
\(\left(a+b\right)\left(a^2-ab+b^2\right)\)
Thay vào thì: \(-\left(x-3\right)\left(x^2-3x+9\right)=-\left[\left(x-3\right)\left(x^2-3x+3^2\right)\right]\)
\(=-\left(x^3-27\right)=-x^3+27\)
Bài làm:
Ta có: \(\left(x-1\right)^3-\left(x+3\right)\left(x^2-3x+9\right)=\left(x-3\right)^3+3\left(2x+1\right)^2-\left(x^3-5x+1\right)\)
\(\Leftrightarrow x^3-3x^2+3x-1-x^3+27=x^3-9x^2+27x-27+12x^2+12x+3-x^3+5x-1\)
\(\Leftrightarrow6x^2+41x-51=0\)
\(\Leftrightarrow6\left(x^2+\frac{41}{6}x+\frac{1681}{144}\right)-\frac{2905}{24}=0\)
\(\Leftrightarrow\left(x+\frac{41}{12}\right)^2-\frac{\left(\sqrt{2905}\right)^2}{12^2}=0\)
\(\Leftrightarrow\left(x+\frac{41}{12}-\frac{\sqrt{2905}}{12}\right)\left(x+\frac{41}{12}+\frac{\sqrt{2905}}{12}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{2905}-41}{12}\\x=\frac{-\sqrt{2905}-41}{12}\end{cases}}\)
bạn tham khảo nhé : https://olm.vn/hoi-dap/detail/61835486860.html
không hiện link mình sẽ gửi qua tin nhắn
Bài làm:
Ta có: \(\frac{3}{x-1}=\frac{4}{y-2}=\frac{5}{z-3}\)
\(\Leftrightarrow\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}\)
Đặt \(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}=k\)
\(\Rightarrow\hept{\begin{cases}x=3k+1\\y=4k+2\\z=5k+3\end{cases}}\)
Thay vào ta được: \(xyz=\left(3k+1\right)\left(4k+2\right)\left(5k+3\right)=192\)
GPT ra được k = 1
=> \(\hept{\begin{cases}x=4\\y=6\\z=8\end{cases}}\)