help!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
√(x + 1)² = 6
|x + 1| = 6
*) Với x ≥ -1, ta có:
x + 1 = 6
x = 6 - 1
x = 5 (nhận)
*) Với x < -1, ta có:
x + 1 = -6
x = -6 - 1
x = -7 (nhận)
Vậy x = -7; x = 5
--------
√(5x + 1)² = 6/7
|5x - 1| = 6/7
*) Với x ≥ 1/5, ta có:
5x - 1 = 6/7
5x = 6/7 + 1
5x = 13/7
x = 13/7 : 5
x = 13/35 (nhận)
*) Với x < 1/5, ta có:
5x - 1 = -6/7
5x = -6/7 + 1
5x = 1/7
x = 1/7 : 5
x = 1/35 (nhận)
Vậy x = 1/35; x = 13/35
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi x (học sinh) là số học sinh cần tìm (x ∈ ℕ* và 10 < x < 50)
Do khi đem số học sinh chia 6 thì dư 3 nên x - 3 ∈ B(6) = {0; 6; 12; 18; 24; 30; 36; 42; 48; 54; ...}
⇒ x ∈ {3; 9; 15; 21; 27; 33; 39; 45; 51; 57; ...}
Do 33 chia 7 dư 5 và 10 < x < 50
⇒ x = 33
Vậy số học sinh cần tìm là 33 học sinh
![](https://rs.olm.vn/images/avt/0.png?1311)
Vậy ta thấy, nếu cửa hàng làm 66 phần bánh loại A và 22 phần bánh loại B thì sẽ đạt được lợi nhuận cao nhất.
Gọi �x, y$ lần lượt là số phần bánh loại A và loại B mà cửa hàng làm ra.
Theo đề bài, ta thấy
Để làm ra �x phần bánh loại A cần 2�2x gam bột, �x gam đường và 5�5x gam nhân bánh;
Để làm ra �y phần bánh loại B cần �y gam bột, 2�2y gam đường và 5�5y gam nhân bánh.
Lợi nhuận của cửa hàng là �(�)=16�+20�F(x)=16x+20y ( nghìn đồng).
Theo đề bài, ta có hệ bất phương trình { 2�+�≤20 �+2�≤105�+5�≤40 �,�∈�⎩⎨⎧ 2x+y≤20x+2y≤105x+5y≤40x,y∈N
Biểu diễn lên hệ trục ���Oxy, ta có miền nghiệm là tứ giác ����OABC, kể cả các cạnh của tứ giác (như hình vẽ) với �(0;0)O(0;0), �(0;5),A(0;5), �(6;2),B(6;2), �(8;0)C(8;0).
Ta tính lợi nhuận của cửa hàng tại tọa độ các đỉnh của miền nghiệm:
�(0;0)=0F(0;0)=0 nghìn đồng; �(0;5)=100F(0;5)=100 nghìn đồng
�(6;2)=136F(6;2)=136 nghìn đồng; �(8;0)=128F(8;0)=128 nghìn đồng
Vậy ta thấy, nếu cửa hàng làm 66 phần bánh loại A và 22 phần bánh loại B thì sẽ đạt được lợi nhuận cao nhất.
![](https://rs.olm.vn/images/avt/0.png?1311)
Để A ∩ B có đúng 4 phần tử nguyên thì:
m - 1 < -1; m + 5 ≥ 2 và m ∈ Z
*) m - 1 < -1
m < 0
*) m + 5 ≥ 2
m ≥ 2 - 5
m ≥ -3
Vậy -3 ≤ m < 0 và m ∈ Z thì A ∩ B có đúng 4 phần tử nguyên
đoạn A=[-1;2] có 4 phần tử nguyên là {-1;0;1;2}
Với �∈�m∈Z, �=(�−1;�+5]B=(m−1;m+5] có các phần tử nguyên là: {�;�+1;�+2;�+3;�+4;�+5}{m;m+1;m+2;m+3;m+4;m+5}.
Để �∩�A∩B có đúng 44 phần tử nguyên thì [�=−1�+1=−1�+2=−1⇔[�=−1�=−2�=−3m=−1m+1=−1m+2=−1⇔m=−1m=−2m=−3.
Vậy có 33 giá trị nguyên của �m thỏa mãn đề bài.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Liệt kê các phần tử của tập hợp �={�∈�∣ 2�2+3�+1=0 }A={x∈Z 2x2+3x+1=0 }
Ta có: 2�2+3�+1=0⇔[ �=−12 �=−1 2x2+3x+1=0⇔ x=−21 x=−1 .
Do đó: �={−1}A={−1}.
b) Cho hai tập hợp �={�∈�∣∣�∣>4}A={x∈R∣x∣>4} và �={�∈�∣−5≤�−1<5}B={x∈R−5≤x−1<5}. Xác định tập �=�\�X=B\A.
Ta có:
⚡∣�∣>4⇔[ �>4 �<−4⇒�=(−∞;−4)∪(4;+∞ )∣x∣>4⇔[ x>4x<−4⇒A=(−∞;−4)∪(4;+∞ ).
⚡−5≤�−1<5⇔−4≤�<6⇒�=[−4;6)−5≤x−1<5⇔−4≤x<6⇒B=[−4;6).
Suy ra �=�\�=[−4;4]X=B\A=[−4;4].
![](https://rs.olm.vn/images/avt/0.png?1311)
Số thập phân có hai chữ số khác nhau có dạng:
\(\overline{a,b}\)
Trong đó a; b lần lượt có số cách chọn là: 10; 9
Số các số thập phân có hai chữ số khác nhau là:
10 x 9 = 90 (số)
Đáp số:...
Gọi a,b là số thập phân có hai chữ số cần tìm
a có 10 cách chọn
Mà b có thể bằng 0 nên b cũng có 10 cách chọn
Vậy có 10 × 10 = 100 số thỏa mãn đề bài
![](https://rs.olm.vn/images/avt/0.png?1311)
53 ha = ? km
Vì ha là đơn vị diện tích và km là đơn vị đo độ dài do vậy
Câu trả lời là không thể so sánh được em nhé!
![](https://rs.olm.vn/images/avt/0.png?1311)
1, 17.(-84) + 17.(-16)
= - 17.84 - 17.16
= -17.(84 + 16)
= -17.100
= -1700
2; 15.(58) - 15.(48)
= 15.(58 - 48)
= 15. 10
= 150
3, -37.86 + 37.76
= -37.(86 - 76)
= -37.10
= - 370
4, 1975.(-115) + 1975.75
= 1975. (-115 + 75)
= 1975 .(-40)
= - 79000
5, 79.89 - 79.(-11)
= 79.(89 + 11)
= 79.100
= 7900
1, 17.(-84) + 17.(-16)
= - 17.84 - 17.16
= -17.(84 + 16)
= -17.100
= -1700
2; 15.(58) - 15.(48)
= 15.(58 - 48)
= 15. 10
= 150
3, -37.86 + 37.76
= -37.(86 - 76)
= -37.10
= - 370
4, 1975.(-115) + 1975.75
= 1975. (-115 + 75)
= 1975 .(-40)
= - 79000
5, 79.89 - 79.(-11)
= 79.(89 + 11)
= 79.100
= 7900
\(B=\dfrac{2x+y}{2x^2-xy}+\dfrac{8y}{y^2-4x^2}+\dfrac{2x-y}{2x^2+xy}\left(x\ne0;y\ne\pm2x\right)\)
\(=\dfrac{2x+y}{x\left(2x-y\right)}-\dfrac{8y}{4x^2-y^2}+\dfrac{2x-y}{x\left(2x+y\right)}\)
\(=\dfrac{\left(2x+y\right)^2}{x\left(2x-y\right)\left(2x+y\right)}-\dfrac{8xy}{x\left(2x-y\right)\left(2x+y\right)}+\dfrac{\left(2x-y\right)^2}{x\left(2x-y\right)\left(2x+y\right)}\)
\(=\dfrac{4x^2+4xy+y^2-8xy+4x^2-4xy+y^2}{x\left(2x-y\right)\left(2x+y\right)}\)
\(=\dfrac{8x^2-8xy+2y^2}{x\left(2x-y\right)\left(2x+y\right)}\)
\(=\dfrac{2\left(4x^2-4xy+y^2\right)}{x\left(2x-y\right)\left(2x+y\right)}\)
\(=\dfrac{2\left(2x-y\right)^2}{x\left(2x-y\right)\left(2x+y\right)}\)
\(=\dfrac{2\left(2x-y\right)}{x\left(2x+y\right)}\)
\(=\dfrac{4x-2y}{2x^2+xy}\)
Với \(x\ne0;y\ne\pm2x\), xét: \(x=\dfrac{1}{2};y=-\dfrac{3}{2}\left(tmdk\right)\)
Thay \(x=\dfrac{1}{2};y=-\dfrac{3}{2}\) vào \(B\), ta được:
\(B=\dfrac{4\cdot\dfrac{1}{2}-2\cdot\dfrac{-3}{2}}{2\cdot\left(\dfrac{1}{2}\right)^2+\dfrac{1}{2}\cdot\dfrac{-3}{2}}=\dfrac{5}{-\dfrac{1}{4}}=-20\)
\(Toru\)