98-087r0879-0987654-9097754322089-9754
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\left(\text{đpcm}\right)\)
b) Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)(dãy tỉ số bằng nhau)
=> \(\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(\text{đpcm}\right)\)
Bài làm:
a) \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{b}+1=\frac{c}{d}+1\)
\(\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)
b) Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
=> \(\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có:
\(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\)
\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\)
=> \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Thu gọn và sắp xếp:
P(x) = x² + 5x^4 - 3x³ + x² + 4x^4 + 3x³ - x + 5
= (5x^4 + 4x^4) + (- 3x³+ 3x³) + (x² + x²) - x + 5
= 9x^4 + 2x² - x +5
Q(x)= x - 5x³ - x² - x^4 + 4x³ - x² - 3x - 1
= -x^4 + (- 5x³ + 4x³) + (- x² - x²) + (x - 3x) - 1
= -x^4 - x³ -2x² - 2x - 1
mik mới chỉ làm đc vz thui ak
a, Ta có : \(P\left(x\right)=x^2+5x^4-3x^3+x^2+4x^4+3x^3-x+5\)
\(=2x^2+9x^4-x+5\)
\(Q\left(x\right)=x-5x^3-x^2-x^4+4x^3-x^2+3x-1\)
\(=4x-x^3-2x^2-1-x^4\)
Sắp xếp :
\(P\left(x\right)=9x^4+2x^2-x+5\)
\(Q\left(x\right)=-x^4-x^3-2x^2+4x-1\)
b, \(M\left(x\right)=9x^4+2x^2-x+5-x^4-x^3-2x^2+4x-1\)
\(=8x^4+3x+4\)Bậc : 4
c, \(N\left(x\right)=18x^4+4x^2-2x+10+x^4+x^3+2x^2-4x+1\)
\(=19x^4+6x^2-6x+11\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Các bài này em áp dụng công thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\). Dấu "=" xảy ra khi tích \(a.b\ge0\),
a) Ta có : \(x-y=3\Rightarrow x=3+y\).
Do đó : \(B=\left|x-6\right|+\left|y+1\right|\)
\(=\left|3+y-6\right|+\left|y+1\right|=\left|3-y\right|+\left|y+1\right|\)
\(\ge\left|3-y+y+1\right|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\left(3-y\right)\left(y+1\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}-1\le y\le3\\2\le x\le6\end{cases},x-y=3}\)
Vậy giá trị nhỏ nhất của \(B=4\) \(\Leftrightarrow\hept{\begin{cases}-1\le y\le3\\2\le x\le6\end{cases},x-y=3}\)
b) Ta có : \(x-y=2\Rightarrow x=2+y\)
Do đó \(C=\left|2x+1\right|+\left|2y+1\right|\)
\(=\left|2y+5\right|+\left|2y+1\right|=\left|-2y-5\right|+\left|2y+1\right|\)
\(\ge\left|-2y-5+2y+1\right|=4\)
Các câu khác tương tự nhé em !
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C D E
a, Xét tam giác AED và tam giác CED có :
cạnh ED chung
góc ADE = góc CDE = 90độ
AD = CD ( vì D là trung điểm cạnh AC )
Do đó : tam giác AED = tam giác CED ( c.g.c )
=> AE = CE ( cạnh tương ứng )
Vậy tam giác AEC cân tại E
b, Xét tam giác ABC có góc A = 90độ nên :
góc B + góc C = 90độ
mà góc C = góc EAC ( vì tam giác AEC cân theo câu a )
=> góc B + góc EAC = 90độ
Ta có : góc A = góc BAE + góc EAC = 90độ
=> góc B = góc BAE ( vì cùng phụ với góc EAC )
=> tam giác ABE cân tại E
=> AE = BE ( * )
mà AE = CE ( theo câu a )
=> BE = CE và điểm E nằm trên cạnh BC
=> E là trung điểm của BC
=> BE = CE = \(\frac{BC}{2}\) (1)
Theo bài cho : 2AB = BC
=> AB = \(\frac{BC}{2}\) (2)
Từ (1) và (2) suy ra : AB = BE và BE = AE ( theo ( * ) )
=> AB = BE = AE
Vậy tam giác ABE đều .
Học tốt
B A C M D E
Gọi M là trung điểm của BC
a) Xét 2 tam giác vuông : \(\Delta\)AED và \(\Delta\)CED có :
\(\hept{\begin{cases}AD=CD\left(gt\right)\\\widehat{EAD}=\widehat{EDC}\left(=90^{\text{o}}\right)\\ED\text{ chung}\end{cases}}\Rightarrow\Delta AED=\Delta CED\left(c.g.c\right)\)
=> AE = EC (cạnh tương ứng)
=> \(\Delta\)AEC cân tại E
b) Vì trong 1 tam giác vuông trung tuyến ứng với cạnh huyền bằng 1/2 cạnh huyền
=> AM = 1/2 BC
=> AM = BM
Lại có BM = AB
=> AB = AM = BM
=> TAM GIÁC ABE đều
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi phần 1; 2 ; 3 lần lượt là \(a;b;c\left(a;b;c>0\right)\)
Theo dề bài ta có : \(\frac{a}{5}=\frac{b}{3};\frac{b}{8}=\frac{c}{5}\Leftrightarrow\frac{a}{40}=\frac{b}{24}=\frac{c}{15}\).
Tổng 3 số là 237 \(\Leftrightarrow a+b+c=237\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có : \(\frac{a}{40}=\frac{b}{24}=\frac{c}{15}=\frac{a+b+c}{40+24+15}=\frac{237}{79}=3\)
\(\Leftrightarrow a=40.3=120;b=24.3=72;c=15.3=45\). Vậy 3 số là 120; 72 và 45
Gọi 3 phần hay 3 số cần tìm lần lượt là a ; b;c
Ta có a + b + c = 237
Lại có : \(\hept{\begin{cases}\frac{a}{b}=\frac{5}{3}\\\frac{b}{c}=\frac{8}{5}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{a}{5}=\frac{b}{3}\\\frac{b}{8}=\frac{c}{5}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{a}{40}=\frac{b}{24}\\\frac{b}{24}=\frac{c}{15}\end{cases}}\Rightarrow\frac{a}{40}=\frac{b}{24}=\frac{c}{15}=\frac{a+b+c}{40+24+15}=\frac{237}{79}=3\)
=> a = 120 ; b = 72 ; c = 45
Vậy 3 phần hay 3 số cần tìm lần lượt là 120 ; 72; 45
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi độ dài 3 cạnh của tam giác lần lượt là a ; b ; c với a < b < c
Ta có : \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b+c}{3+5+7}=\frac{40,5}{15}=2,7\)(Dãy tỉ số bằng nhau)
=> a = 8,1 ; b = 13,5 ; c = 18,9
Vậy độ dài 3 cạnh tam giác lần lượt là 8,1 cm ; 13,5 cm ; 18,9 cm
Gọi các cạnh tỉ lệ 3 ; 5 ; 7 của tam giác lần lượt là \(a;b;c\left(a;b;c>0\right)\)
Vì các cạnh tỉ lệ với 3 ; 5 ; 7 \(\Rightarrow\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\).
Mà chu vi tam giác bằng 40,5 cm \(\Leftrightarrow a+b+c=40,5\left(cm\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b+c}{3+5+7}=\frac{40,5}{15}=2,7\)
\(\Leftrightarrow a=2,7.3=8,1\left(cm\right);b=2,7.5=13,5\left(cm\right);c=2,7.7=18,9\left(cm\right)\)
Vậy độ dài các cạnh của tam giác là 8,1 ; 13,5 và 18,9 cm
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C M E F D 1 2 K
Xét tam giác ABM và tam giác ACM
có : + AB = AC (gt)
+ BM = CM (gt)
+) AM chung
=> tam giác ABM = tam giác ACM (c.c.c)
=> góc A1 = góc A2
Xét tam giác AEM và tam giác AFM có :
+) góc AME = góc AMF (Vì góc MEA = MFA (= 90o) ; góc A1 = góc A2 => góc MEA - góc A1 = góc MFA - góc A2 => <AME = <AMF)
+ góc A1 = góc A2
+) AM chung
=> Tam giác AEM = Tam giác AFM (g.c.g)
=> ME = MF (cạnh tương ứng)
=> AE = AF
b) Gọi K là giao điểm của AM và EF
Xét tam giác AEK và tam giác AFK có
+) góc A1 = góc A2
+) AF = AE (cmt)
+) AK chung
=> tam giác AEK = tam giác AFK (c.g.c)
=> EK = FK (cạnh tương ứng)
=> góc AKE = góc AKF (góc tương ứng)
Lại có góc AKE + góc AKF = 180 o
=> góc AKE = góc AKF = 90o
mà EK = FK
=> AK là trung trực của EF
mà K \(\in\)AM
=> AM là trung trực của EF
c) Vì tam giác ABM = tam giác ACM (cmt)
=> góc AMB = góc AMC
Mà góc AMB + góc AMC = 180 o
=> góc AMB = góc AMC = 90o
lạ có MC = MB = 1/2BC
=> AM là trung trực của BC (1)
Vì góc AMB = góc AMC = 90o
mà góc AMB + góc BMD = góc AMC + góc CMD (=180o)
=> góc BMD = góc CMD = 90o
lại có BM = CM = 1/2BC
=> MD là trung trực của BC (2)
Từ (1) (2) => A;M;D thẳng hàng
![](https://rs.olm.vn/images/avt/0.png?1311)
98-087r0879-0987654-9097754322089-9754
=-9097756190278
học tốt nhé