K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2023

\(A=\dfrac{x^2}{x-2}=\dfrac{x^2-4+4}{x-2}=\dfrac{\left(x-2\right)\left(x+2\right)+4}{x-2}\)

\(=x+2+\dfrac{4}{x-2}=x-2+\dfrac{4}{x-2}+4\)

mà \(x-2+\dfrac{4}{x-2}\ge2.\sqrt[]{x-2.\dfrac{4}{x-2}}=2.2=4\) Bất đẳng thức Cauchy)

\(\Rightarrow A=x-2+\dfrac{4}{x-2}+4\ge8\)

\(\Rightarrow GTNN\left(A\right)=8\)

26 tháng 7 2023

B = \(x^2\) - 2\(xy\) + 2y\(^2\) + 2\(x\) - 10y + 17

B = (\(x^2\) - 2\(xy\) + y2) + 2(\(x-y\)) + 1 + (y2 - 8y + 16)

B = (\(x-y\))2 + 2(\(x-y\)) + 1 + (y - 4)2

B = (\(x-y\) + 1)2 + (y - 4)2

(\(x-y+1\))2 ≥ 0 ∀ \(x;y\); (y - 4)2 ≥ 0 

B ≥ 0

Kết luận biểu thức không âm. Chứ không phải là biểu thức luôn dương em nhé. Vì dương thì biểu thức phải > 0 ∀ \(x;y\). Mà số 0 không phải là số dương. 

 

26 tháng 7 2023

Giải giúp mik với mik cần gấp

26 tháng 7 2023

ko biết

 

HQ
Hà Quang Minh
Giáo viên
25 tháng 7 2023

a, \(x=360^o-50^o-100^o-120^o=90^o\)

b, MNPQ là hình vuông \(\Rightarrow x=90^o\)

c, \(x=360^o-90^o-90^o-100^o=80^o\)

d, \(x=360^o-\left(180^o-100^o\right)-\left(180^o-60^o\right)-90^o=70^o\)

25 tháng 7 2023

Để chứng minh bất đẳng thức 1 < a/b+c+b/c+a+c/a+b < 2, ta sẽ chứng minh từng phần.

Phần 1: Chứng minh 1 < a/b+c+b/c+a+c/a+b

Ta có:
a/b + b/c + c/a > 3√(a/b * b/c * c/a) = 3√(abc/(abc)) = 3

Vậy ta có: a/b + b/c + c/a + b/a + c/b + a/c > 3 + 1 + 1 = 5

Phần 2: Chứng minh a/b+c+b/c+a+c/a+b < 2

Ta có:
a/b + b/c + c/a < a/b + b/a + b/c + c/b = (a+b)/(b+c) + (b+c)/(a+b)

Áp dụng bất đẳng thức AM-GM, ta có:
(a+b)/(b+c) + (b+c)/(a+b) ≥ 2√[(a+b)/(b+c) * (b+c)/(a+b)] = 2

Do đó ta có: a/b+c+b/c+a+c/a+b < 2

Từ đó, ta suy ra bất đẳng thức 1 < a/b+c+b/c+a+c/a+b < 2.

25 tháng 7 2023

Để chứng minh bất đẳng thức 1 < a/b+c+b/c+a+c/a+b < 2, ta sẽ chứng minh từng phần.

Phần 1: Chứng minh 1 < a/b+c+b/c+a+c/a+b

Ta có:
a/b + b/c + c/a > 3√(a/b * b/c * c/a) = 3√(abc/(abc)) = 3

Vậy ta có: a/b + b/c + c/a + b/a + c/b + a/c > 3 + 1 + 1 = 5

Phần 2: Chứng minh a/b+c+b/c+a+c/a+b < 2

Ta có:
a/b + b/c + c/a < a/b + b/a + b/c + c/b = (a+b)/(b+c) + (b+c)/(a+b)

Áp dụng bất đẳng thức AM-GM, ta có:
(a+b)/(b+c) + (b+c)/(a+b) ≥ 2√[(a+b)/(b+c) * (b+c)/(a+b)] = 2

Do đó ta có: a/b+c+b/c+a+c/a+b < 2

Từ đó, ta suy ra bất đẳng thức 1 < a/b+c+b/c+a+c/a+b < 2.

25 tháng 7 2023

giúp e vs

 

25 tháng 7 2023

Xét Δ vuông ADC ta có :

\(AD=\dfrac{CD}{2}\)

mà AD là cạnh góc vuông, CD là cạnh huyền

⇒ Δ ADC là tam giác nửa đều

\(\Rightarrow\left\{{}\begin{matrix}\widehat{ADC}=60^O\\\widehat{DCA}=30^O\end{matrix}\right.\)

\(\Rightarrow\widehat{ADC}=\widehat{ABC}=60^O\) (hai góc đối hình bình hành) (1)

Ta lại có : \(\widehat{BAC}=\widehat{DCA}\) (so le trong)

mà \(\widehat{DCA}=30^O\)

\(\Rightarrow\widehat{BAC}=30^2\)

mà \(\widehat{DAB}=\widehat{DAC}+\widehat{BAC}\)

\(\Rightarrow\widehat{DAB}=90^o+30^o=120^o\)

\(\Rightarrow\widehat{BCD}=\widehat{DAB}=120^o\) (hai góc đối hình bình hành) (2)

(1), (2)⇒ điều phải tính toán theo đề