Tìm GTNN:
\(C=13x^2+4y^2-12xy-2x-4y+10\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý Bezout:
\(f\left(x\right)=x^3-3x^2+5x+2m\)chia hết cho g (x) = x + 1 nên:
\(f\left(-1\right)=0\)
\(\Rightarrow-1-3-5+2m=0\Leftrightarrow2m=9\Leftrightarrow m=\frac{9}{2}\)
Ta có:
\(2x\left(x+5\right)-x-5=0\)
=> \(2x\left(x+5\right)-\left(x+5\right)=0\)
=> \(\left(2x-1\right)\left(x+5\right)=0\)
=> \(\orbr{\begin{cases}2x-1=0\\x+5=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{2}\\x=-5\end{cases}}\)
2x(x+5)-x-5=0
2x(x+5)-(x+5)=0
(x+5)(2x-1)=0
TH1:x+5=0
x =-5
TH2:2x-1=0
2x =1
x = 1/2
Vậy x=-5 và x=1/2
a) \(\frac{x^4-4x^2+3}{x^4+6x^2-7}=\frac{x^4-3x^2-x^2+3}{x^4+7x^2-x^2-7}=\frac{x^2\left(x^2-3\right)-\left(x^2-3\right)}{x^2\left(x^2+7\right)-\left(x^2+7\right)}=\frac{\left(x^2-1\right)\left(x^2-3\right)}{\left(x^2-1\right)\left(x^2+7\right)}=\frac{x^2-3}{x^2+7}\)
b) \(\frac{x^4+x^3-x-1}{x^4+x^3+2x^2+x+1}=\frac{x^3\left(x+1\right)-\left(x+1\right)}{\left(x^4+2x^2+1\right)+\left(x^3+x\right)}\)
\(=\frac{\left(x+1\right)\left(x^3-1\right)}{\left(x^2+1\right)^2+x\left(x^2+1\right)}=\frac{\left(x+1\right)\left(x-1\right)\left(x^2+x+1\right)}{\left(x^2+1\right)\left(x^2+1+x\right)}\)
\(=\frac{x^2-1}{x^2+1}\)
c) \(\frac{x^3+3x^2-4}{x^3-3x+2}=\frac{x^3+4x^2-x^2-4}{x^3-4x+x+2}=\frac{x^2\left(x^2+4\right)-\left(x^2+4\right)}{x\left(x^2-4\right)+\left(x+2\right)}\)
\(=\frac{\left(x^2-1\right)\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)+\left(x+2\right)}=\frac{\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(x^2-2x+1\right)}\)
\(=\frac{\left(x-1\right)\left(x+1\right)\left(x-2\right)}{\left(x-1\right)^2}=\frac{x^2-x-2}{x-1}\)
\(x^2y+2xy+y=32x\)
\(\Leftrightarrow y\left(x^2+2x+1\right)=32\left(x+1\right)-32\)
\(\Leftrightarrow y\left(x+1\right)^2=32\left(x+1\right)-32\)
\(\Leftrightarrow\)\(\left(x+1\right)\left(32-xy-y\right)=32\)
Vì x, y nguyên dương nên:
...( tự làm nhé!)
Ta có:
C = 13x2 + 4y2 - 12xy - 2x - 4y + 10
C = (9x2 - 12xy + 4y2) + 2(3x - 2y) + 1 + (4x2 - 8x + 4) + 5
C = (3x - 2y)2 + 2(3x - 2y) + 1 + 4(x2 - 2x + 1) + 5
C = (3x - 2y + 1)2 + 4(x - 1)2 + 5 \(\ge\)5 \(\forall\)x; y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}3x-2y+1=0\\x-1=0\end{cases}}\) <=> \(\hept{\begin{cases}2y=3x+1\\x=1\end{cases}}\) <=> \(\hept{\begin{cases}2y=3.1+1=4\\x=1\end{cases}}\)<=> \(\hept{\begin{cases}y=2\\x=1\end{cases}}\)
Vậy MinC = 5 <=> x = 1 và y = 2
SOS dao lam có thể sử dụng trong bài này!
Chú ý:
+)\(C=2\left(3x-2y+1\right)^2+5-\left(x-2y+3\right)\left(5x-2y-1\right)\)
+) \(C=8\left(x-1\right)^2+5+\left(x-2y+3\right)\left(5x-2y-1\right)\)
Vậy ta tìm được: \(C=\frac{C+C}{2}=\frac{2\left(3x-2y+1\right)^2+8\left(x-1\right)^2+10}{2}\)
\(=\left(3x-2y+1\right)^2+4\left(x-1\right)^2+5\ge5\)