K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(9-12x+4x^2>0\)

\(\Rightarrow\left(2-2x\right)^2>0\)

\(\Rightarrow2-2x>0\)

\(\Rightarrow-2x>-2\)

\(\Rightarrow x< 1\)

Vậy để A có nghĩa thì \(x< 1\)

B) \(\sqrt{x+2\sqrt{x-1}}\ne0\)

\(x+2\sqrt{x-1}>0\)

\(\Rightarrow x-1+2\sqrt{x-1}+1>0\)

\(\Rightarrow\left(\sqrt{x-1}+1\right)^2>0\)

\(\sqrt{x-1}\ge0\Rightarrow x\ge1\)\(\)

Vậy \(x\ge1\)thì B có nghĩa

C) \(\sqrt{3x-2}.\sqrt{x-1}\ge0\)

\(\orbr{\begin{cases}3x-2\ge0\\x-1\ge0\end{cases}}\Rightarrow\orbr{\begin{cases}x\ge\frac{2}{3}\\x\ge1\end{cases}}\)

Vậy \(x\ge1\)thì C có nghĩa 

21 tháng 7 2019

a)  \(\frac{1}{\sqrt{9-12x+4x^2}}=\frac{1}{\sqrt{\left(2x-3\right)^2}}=\frac{1}{2x-3}\) 

để căn thức A có nghĩa \(\Rightarrow2x-3\ne0\Leftrightarrow x\ne\frac{3}{2}\) 

b)\(\frac{1}{\sqrt{x+2\sqrt{x}+1}}=\frac{1}{\sqrt{\left(\sqrt{x}+1\right)^2}}=\frac{1}{\sqrt{x}+1}\) 

để căn thức B có nghĩa =>  \(\sqrt{x}+1\ne0\) và  \(x\ge0\) hay  \(\sqrt{x}+1>1\Leftrightarrow x=0\) 

Vậy..........

21 tháng 7 2019

MN ƠI GIÚP MK NHA MAI MIK ĐI HOK R

21 tháng 7 2019

nhìn mà nhác giải vl :v

a) \(\sqrt{3x^2-2x+1}+4x=\sqrt{3x^2+2x}+1\)

<=> \(\sqrt{3x^2-2x+1}=\sqrt{3x^2+2x}+1-4x\)

<=> \(\left(\sqrt{3x^2-2x+1}\right)^2=\left(\sqrt{3x^2+2x}+1-4x\right)^2\)

<=> \(3x^2-2x+1=19x^2-8\sqrt{3x^2+2x}.x-6x+2\sqrt{3x^2+2x}+1\)

<=> \(-16x^2+8\sqrt{3x^2+2x}.x+4x-2\sqrt{3x^2+2x}=0\)

<=> \(-2\left(4x-1\right)\left(2x-\sqrt{3x^2+2x}\right)=0\)

<=> \(\hept{\begin{cases}x=\frac{1}{4}\\x=0\\x=2\end{cases}}\) <=> \(\orbr{\begin{cases}x=\frac{1}{4}\\x=0\end{cases}}\) (vì k có ngoặc vuông 3 nên mình dùng tạm ngoặc nhọn, thông cảm)

<=> \(\orbr{\begin{cases}x=\frac{1}{4}\\x=2\end{cases}}\)

b) \(\sqrt{x^2+x-2}+x^2=\sqrt{2\left(x-1\right)}+1\)

<=> \(\sqrt{x^2+x-2}=\sqrt{2\left(x-1\right)}+1-x^2\)

<=> \(\left(\sqrt{x^2+x-2}\right)^2=\left[\sqrt{2\left(x-1\right)}+1-x^2\right]^2\)

<=> \(x^2+x-2=x^4-2\sqrt{2}.x^2.\sqrt{x-1}-2x^2+2x+2\sqrt{2}.\sqrt{x-2}-1\)

<=> \(x^4-2\sqrt{2}.x^2.\sqrt{x-1}-2x^2+2x+2\sqrt{2}.\sqrt{x-1}-1=x^2+x-2\)

<=> \(-2\sqrt{2}.x^2.\sqrt{x-1}+2\sqrt{2}.\sqrt{x-1}-1=-x^4+3x^2-x-2\)

<=> \(-2\sqrt{2}.x^2.\sqrt{x-1}+2\sqrt{2}.\sqrt{x-1}=-x^4+3x^2-x-1\)

<=> \(-2\sqrt{2}.\sqrt{x-1}.\left(x^2+1\right)=-x^4+3x^2-x-1\)

<=> \(\left[-2\sqrt{2}.\sqrt{x-1}\left(x^2+1\right)\right]^2=\left(-x^4+3x^2-x-1\right)^2\)

<=> \(8x^5-8x^4-16x^3+16x^2+8x-8=x^8-6x^6+2x^5+11x^4-6x^3-5x^2+2x+1\)

<=> x = 1

d) mình làm tắt cho nhanh 

d) \(\left(\sqrt{4+x}-1\right)\left(\sqrt{1-x}+1\right)=2x\)

<=> \(\sqrt{4+x}.\sqrt{x-1}+\sqrt{4+x}-\sqrt{x-1}-1=2x\)

<=> \(\sqrt{4+x}.\sqrt{1-x}+\sqrt{4+x}-\sqrt{1-x}=2x+1\)

<=> \(\sqrt{4+x}.\sqrt{x-1}+\sqrt{4+x}=2x+1+\sqrt{x-1}\)

<=> \(\left(\sqrt{4+x}.\sqrt{1-x}+\sqrt{4+x}\right)^2=\left(2x+1+\sqrt{1-x}\right)^2\)

<=> \(2\sqrt{-x+1}.\left(x+4\right)=5x^2+4x\sqrt{-x+1}+5x+2\sqrt{-x+1}-6\)

<=> \(\frac{2\sqrt{-x+1}.\left(x+4\right)}{2\left(x+4\right)}=\frac{5x^2}{2\left(x+4\right)}+\frac{4x\sqrt{-x+1}}{2\left(x+4\right)}+\frac{5x}{2\left(x+4\right)}+\frac{2\sqrt{-2x+1}}{2\left(x+4\right)}-\frac{6}{2\left(x+4\right)}\)

<=> \(\sqrt{-x+1}=\frac{5x^2+4x\sqrt{-x+1}+5x+2\sqrt{-x+1}-6}{2\left(4+x\right)}\)

<=> \(2\sqrt{-x+1}.\left(4+x\right)=5x^2+4x\sqrt{-x+1}+5x+2\sqrt{-x+1}-6\)

<=> \(-2x\sqrt{-x+1}+6\sqrt{-x+1}=5x^2+5x-6\)

<=> \(\frac{2\sqrt{-x+1}.\left(-x+3\right)}{2\left(-x+3\right)}=\frac{5x^2}{2\left(-x+3\right)}+\frac{5x}{2\left(-x+3\right)}-\frac{6}{2\left(-x+3\right)}\)

<=> \(\sqrt{-x+1}=\frac{5x^2+5x-6}{2\left(x-3\right)}\)

<=> \(\left(\sqrt{-x+1}\right)^2=\left[\frac{5x^2+5x-6}{2\left(3-x\right)}\right]^2\)

<=> \(-x+1=\frac{25x^4+50x^3-35x^2-60x+36}{36-24+4x}\)

<=> \(\hept{\begin{cases}x=0\\x=\frac{21}{25}\\x=-3\end{cases}}\)=> x = 21/25 (lý do dùng ngoặc nhọn như lý do mình ghi ở trên =))) )

=> x = 21/25

20 tháng 7 2019

\(2x+3+\sqrt{4x^2+9x+2}=2\sqrt{x+2}+\sqrt{4x+1}\left(x\ge-\frac{1}{4}\right)\)

\(\Leftrightarrow2\left(x+2\right)-1+\sqrt{\left(x+2\right)\left(4x+1\right)}=2\sqrt{x+2}+\sqrt{4x+1}\)

\(\Leftrightarrow4\left(x+2\right)-2+2\sqrt{x+2}.\sqrt{4x+1}=4\sqrt{x+2}+2\sqrt{4x+1}\)

Đặt \(\hept{\begin{cases}2\sqrt{x+2}=a\left(a\ge0\right)\\\sqrt{4x+1}=b\left(b\ge0\right)\end{cases}\Rightarrow}a^2-b^2=4\left(x+2\right)-4x-1=7\)\(\Leftrightarrow\left(a-b\right)\left(a+b\right)=7\)(1)

\(pt:a^2-2+ab=2a+2b\)

\(\Leftrightarrow a\left(a+b\right)-2\left(a+b\right)=2\)

\(\Leftrightarrow\left(a-2\right)\left(a+b\right)=2\)(2)

Nhân chéo 2 vế của (1) với (2) được

\(7\left(a-2\right)\left(a+b\right)=2\left(a-b\right)\left(a+b\right)\)

\(\Leftrightarrow7\left(a-2\right)=2\left(a-b\right)\left(Do\left(a+b\right)>0\right)\)

\(\Leftrightarrow7a-14=2a-2b\)

\(\Leftrightarrow5a=14-2b\)

\(\Leftrightarrow10\sqrt{x+2}=14-2\sqrt{4x+1}\)

\(\Leftrightarrow5\sqrt{x+2}=7-\sqrt{4x+1}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{4x+1}\le7\\25\left(x+2\right)=49-14\sqrt{4x+1}+4x+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}0\le4x+1\le49\\21x=-14\sqrt{4x+1}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-\frac{1}{4}\le x\le0\\441x^2=196\left(4x+1\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-\frac{1}{4}\le x\le0\\441x^2-784x-196=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-\frac{1}{4}\le x\le0\\49\left(9x+2\right)\left(x-2\right)=0\end{cases}}\)

\(\Leftrightarrow x=-\frac{2}{9}\left(TmĐKXĐ\right)\)

Vậy

22 tháng 7 2019

Incursion_03 em thử nha, sai thì thôi ạ, em hơi nghiện liên hợp r.

ĐK: x>=-1/4

PT \(\Leftrightarrow2x+\frac{31}{9}+\sqrt{4x^2+9x+2}-\frac{4}{9}=2\sqrt{x+2}-\frac{8}{3}+\sqrt{4x+1}-\frac{1}{3}+3\)

\(\Leftrightarrow2\left(x+\frac{2}{9}\right)+\frac{\left(x+\frac{2}{9}\right)\left(4x+\frac{73}{9}\right)}{\sqrt{4x^2+9x+2}+\frac{4}{9}}=\frac{4\left(x+\frac{2}{9}\right)}{2\sqrt{x+2}+\frac{8}{3}}+\frac{4\left(x+\frac{2}{9}\right)}{\sqrt{4x+1}+\frac{1}{3}}\)

\(\Leftrightarrow\left(x+\frac{2}{9}\right)\left[2+\frac{4x+\frac{73}{9}}{\sqrt{4x^2+9x+2}+\frac{4}{9}}-4\left(\frac{1}{2\sqrt{x+2}+\frac{8}{3}}+\frac{1}{\sqrt{4x+1}+\frac{1}{3}}\right)\right]=0\)

Cái ngoặc to em chịu:( đang suy nghĩ

20 tháng 7 2019

Ta có bất đẳng thức phụ sau (bđt Mincopski)

\(\sqrt{x^2+y^2}+\sqrt{z^2+t^2}\ge\sqrt{\left(x+z\right)^2+\left(y+t\right)^2}\left(x;y;z;t\inℝ\right)\)

Thật vậy :

 \(bđt\Leftrightarrow x^2+y^2+2\sqrt{\left(x^2+y^2\right)\left(z^2+t^2\right)}+z^2+t^2\ge x^2+2xz+z^2+y^2+2yt+t^2\)

\(\Leftrightarrow\sqrt{x^2z^2+x^2t^2+y^2z^2+y^2t^2}\ge xz+yt\)

*Nếu xz + yt < 0 thì bđt hiển nhiên đúng

*Nếu xz + yt > 0 thì bđt trở thành 

\(x^2z^2+x^2t^2+y^2z^2+y^2t^2\ge x^2z^2+2xyzt+y^2t^2\)

\(\Leftrightarrow x^2t^2-2xyzt+y^2z^2\ge0\)

\(\Leftrightarrow\left(xt-yz\right)^2\ge0\)(ĐÚng)

Vậy bđt được chứng minh

Áp dụng bđt trên 2 lần ta được

\(P\ge\sqrt{\left(5+5\right)^2+\left(a^2+b^2\right)^2}+\sqrt{25+c^4}\)

   \(\ge\sqrt{\left(5+5+5\right)^2+\left(a^2+b^2+c^2\right)^2}\)

   \(=\sqrt{225+\left(a^2+b^2+c^2\right)^2}\)

Bài toán quay về tìm \(min\left(a^2+b^2+c^2\right)\)biết \(2\left(a+b+c\right)+ab+bc+ca=18\)

Ta có bđt phụ sau \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)(Tự chứng minh bằng biến đổi tương đương nhé)

        \(\Rightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\)

Đặt \(3\left(a^2+b^2+c^2\right)=t\left(t\ge0\right)\)

\(\Rightarrow a+b+c\le\sqrt{3t}\)

Lại có bđt phụ sau \(ab+bc+ca\le a^2+b^2+c^2=\frac{t}{3}\)

Tóm lại ta thu được 2 bđt sau \(\hept{\begin{cases}a+b+c\le\sqrt{3t}\\ab+bc+ca\le\frac{t}{3}\end{cases}}\)

Ta có \(18=2\left(a+b+c\right)+ab+bc+ca\le2\sqrt{3t}+\frac{t}{3}\)

\(\Leftrightarrow\frac{t}{3}+2\sqrt{3t}-18\ge0\)

\(\Leftrightarrow t+6\sqrt{3t}-54\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{t}\le-9-3\sqrt{3}\left(Loa_.i\cdot do\cdot\sqrt{t}\ge0\right)\\\sqrt{t}\ge9-3\sqrt{3}\left(Tm\right)\end{cases}}\)

Có \(\sqrt{t}\ge9-3\sqrt{3}\)

\(\Leftrightarrow\sqrt{3\left(a^2+b^2+c^2\right)}\ge9-3\sqrt{3}\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge108-54\sqrt{3}\)

\(\Leftrightarrow a^2+b^2+c^2\ge36-18\sqrt{3}\)

Quay trở lại bài toán \(P\ge\sqrt{225+\left(a^2+b^2+c^2\right)^2}\ge\sqrt{225+\left(36-18\sqrt{3}\right)^2}\)

Dấu "=" xảy ra tại a = b = c

P/S: sai đâu thì thôi nha :v a lười ktra lại lắm

19 tháng 7 2019

Biểu thức A chị tính A2 rồi sẽ tính đc A

19 tháng 7 2019

Biểu thức B ko bt có sai đề ở căn thứ 2 ko ạ

Nếu nhân B với căn 2 thì cái căn thức nhất tách đc thành hđt (a+b)2 đấy ạ nhưng cái căn thứ 2 thì ko tách đc

19 tháng 7 2019

VÌ A là số nguyên , x nguyên

=> \(\sqrt{x-4}\)là số nguyên

\(A=\frac{2x\sqrt{x-4}}{x-4}=\frac{2x-8+8}{\sqrt{x-4}}=2\sqrt{x-4}+\frac{8}{\sqrt{x-4}}\)là số nguyên

=> \(\frac{8}{\sqrt{x-4}}\)là số nguyên

=> \(\sqrt{x-4}\in\left\{1;2;4;8\right\}\)

=> \(x\in\left\{5;8;20;68\right\}\)

Vậy \(x\in\left\{5;8;20;68\right\}\)