Cho tam giác ABC nội tiếp đường tròn (O) và có tâm nội tiếp I. M là trung điểm AI. N đối xứng với M qua OI. K thuộc BC sao cho IK vuông góc với OI. AK cắt MN tại J. H là trực tâm tam giác AIN. Chứng minh rằng: JH // OI ?
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DH
0


T
2 tháng 2 2019
Lời giải
Gọi phương trình trên là (1)
Ta thấy 3y và 21 đều chia hết cho 3.Nên 2x chia hết cho 3
Suy ra x chia hết cho 3. (vì 2 và 3 nguyên tố cùng nhau)
Đặt x = 3t (t nguyên) (1)
Ta có: \(2.3t+3y=21\Leftrightarrow2t+y=7\Rightarrow y=7-2t\) (2)
Từ (1) và (2),ta có: \(\hept{\begin{cases}x=3t\\y=7-2t\end{cases}}\)
A B C I O K M N J H E F D x
Gọi E là điểm đối xứng với A qua đường thẳng OI. Tia AI cắt (O) tại D khác A. DE giao BC tại F.
Ta thấy \(\Delta\)MIN và \(\Delta\)AIE cân tại I có ^IMN = ^IAE (Vì MN // AE vuông góc OI) => ^MIN = ^AIE => I,N,E thẳng hàng.
=> MN là đường trung bình \(\Delta\)AIE => AE = 2.MN, IE = 2.IN
Ta có: AE // IK (Cùng vuông góc OI) => ^KIE = ^IEA = ^IAE = ^BAE - ^BAD = ^BDx - ^DBC = ^BFD = ^KFE
=> Tứ giác KEIF nội tiếp => ^KEI = ^BFI (1)
Mặt khác: \(\Delta\)DFC ~ \(\Delta\)DCE (g.g) => DC2 = DF.DE => DI2 = DF.DE => \(\Delta\)DFI ~ \(\Delta\)DIE (c.g.c)
=> ^DFI = ^DIE = 2.^IAE = 2.^BFD (Vì ^IAE = ^BFD) => ^KIE = ^BFI (2)
Từ (1) và (2) => ^KIE = ^KEI => \(\Delta\)IKE cân tại K. Từ đó: \(\Delta\)IKE ~ \(\Delta\)AIE (g.g) => IE2 = IK.AE
Dễ thấy MJ là đường trung bình \(\Delta\)AIK => IK = 2.MJ. Kết hợp với AE = 2.MN (cmt)
Suy ra: IE2 = 4.MJ.MN hay AI2 = 4.MJ.MN => 4.MA2 = 4.MJ.MN => MA2 = MJ.MN => \(\Delta\)MJA ~ \(\Delta\)MAN (c.g.c)
=> ^MJA = ^MAN. Tương tự thì ^MJI = ^MIN => ^MJA + ^MJI = ^MAN + ^MIN => ^AJI = 1800 - ^ANI
Lại có: H là trực tâm \(\Delta\)AIN => ^AHI = 1800 - ^ANI. Do đó: ^AHI = ^AJI => Tứ giác AIHJ nội tiếp
=> ^AJH + ^AIH = 1800 <=> ^MJA + ^MJH + 900 - ^IAN = ^MJH + 900 = 1800 => ^MJH = 900
=> JH vuông góc MN. Mà OI cũng vuông góc MN nên JH // OI (đpcm).