Tìm đa thức dư khi chia x2019 + x2 + 1 cho x3 - x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta thấy rằng : P ( x ) là một đa thức bậc 3 và có hệ số cao nhất bằng 3 . Do đó ta viết P ( x ) dưới dạng chính tắc như sau :
\(P\left(x\right)=3x^3+Bx^2+Cx+D\)
\(\Rightarrow\left(x-1\right)\left(x-3\right)\left(3x+4\right)+5x-2=3x^3+Bx^2+Cx+D\)
+) Với x =0 ta có D = 10
+) Với x = 1 ta có : 3 = 3 + B + C + 10
=> B + C = -10 ( 1 )
+) Với x = -1 ta có : 1 = -3 + B - C = 10
=> B -C = 6 ( 2 )
Từ (1) và (2) suy ra B = -8 ; C= -2
Vậy \(P\left(x\right)=3x^3-8x^2-2x+10\)

Qua D vẽ đường thẳng song song với AC cắt AB ở K
Ta có AD là đường phân giác trong của \(\Delta ABC\)
\(\Rightarrow\frac{AC}{AB}=\frac{CD}{DB}\)(theo tính chất đường phân giác trong tam giác)
CE là đường phân giác trong của \(\Delta ABC\)nên \(\frac{AC}{BC}=\frac{EA}{EB}\)(theo tính chất đường phân giác trong tam giác)
Mà AB > BC (gt) nên \(\frac{AC}{AB}< \frac{AC}{BC}\Rightarrow\frac{DC}{DB}< \frac{EA}{EB}\)(1)
\(\Delta ABC\)có \(DK//AC\)nên \(\frac{DC}{DB}=\frac{KA}{KB}\)(2)
Từ (1) và (2) suy ra \(\frac{KA}{KB}< \frac{EA}{EB}\)
\(\Rightarrow\frac{KA}{KB}+1< \frac{EA}{EB}+1\Rightarrow\frac{AB}{KB}< \frac{AB}{EB}\Rightarrow KB>EB\)
Do đó K không trùng E. Do vậy DE cắt AC, gọi M là giao điểm của DE và AC
Ta có \(\widehat{ADE}>\widehat{DAM}\)(\(\widehat{ADE}\)là góc ngoài của \(\Delta DAM\))
Mà \(\widehat{DAM}=\widehat{DAE}\)(gt) \(\Rightarrow\widehat{ADE}>\widehat{DAE}\)
\(\Rightarrow AE>DE\)(quan hệ giữa góc và cạnh đối diện trong tam giác) (3)
Mặt khác \(\widehat{DCE}=\widehat{ECA}\left(gt\right)\)mà \(\widehat{ECA}>\widehat{CED}\)(\(\widehat{ECA}\)là góc ngoài của \(\Delta CEM\))
Do đó \(\widehat{DCE}>\widehat{CED}\Rightarrow DE>DC\)(quan hệ giữa góc và cạnh đối diện trong tam giác) (4)
Từ (3) và (4) suy ra AE > DE > DC (đpcm)

a)Xét hình bình hành BFCE có D là trung điểm EF ,D là trung điểm của BC
Mà 2 đường chéo BC EF cắt nhau tại D =>BFCE là hình bình hành(dấu hiệu nhận Bt)
Giải
Ta thấy đa thức dư trong phép chia có dạng ax2 + bx + c
Đặt x2019 + x + 1 = ( x3 - x ) . g( x ) + a2 +bx +c
+) Với x = 0 ta được 1 = c
+) Với x =1 ta được 3 = a + b +1
=> a + b = 2 ( 1 )
+) Với x= -1 ta được 1 = a -b + 1
=> a -b = 0 ( 2 )
Từ ( 1 ) và ( 2 )
=> a=b=1
Vậy đa thức dư là x2 + x + 1