K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2024

Bài 1: Thực hiện phép tính:

a; (\(\dfrac{9}{25}\) - 2.18): (3\(\dfrac{4}{5}\) + 0,2)

 =   (0,36 - 36): (3,8 + 0,2)

 =   - 35,64 : 4

= -  8,91

12 tháng 2 2024

b; \(\dfrac{3}{8}\).19.\(\dfrac{1}{3}\)  - \(\dfrac{3}{8}\).33.\(\dfrac{1}{3}\)

\(\dfrac{3}{8}\).(19\(\dfrac{1}{3}\) - 33\(\dfrac{1}{3}\))

\(\dfrac{3}{8}\).(19 + \(\dfrac{1}{3}\) - 33 - \(\dfrac{1}{3}\))

\(\dfrac{3}{8}\).(-14)

= - \(\dfrac{21}{4}\)

12 tháng 2 2024

loading...  

a) Do AD là tia phân giác của ∠BAC (gt)

⇒ ∠BAD = ∠CAD

Do ∆ABC cân tại A (gt)

⇒ AB = AC

Xét ∆ABD và ∆ACD có:

AB = AC (cmt)

∠BAD = ∠CAD (cmt)

AD là cạnh chung

⇒ ∆ABD = ∆ACD (c-g-c)

b) Do ∆ABD = ∆ACD (cmt)

⇒ ∠ADB = ∠ADC (hai góc tương ứng)

Mà ∠ADB + ∠ADC = 180⁰ (kề bù)

⇒ ∠ADB = ∠ADC = 180⁰ : 2 = 90⁰

⇒ AD ⊥ BC (1)

Do ∆ABD = ∆ACD (cmt)

⇒ BD = CD (hai cạnh tương ứng)

⇒ D là trung điểm của BC (2)

Từ (1) và (2) ⇒ AD là đường trung trực của BC

c) Do ∠BAD = ∠CAD (cmt)

⇒ ∠MAD = ∠NAD

Xét ∆ADM và ∆ADN có:

AD là cạnh chung

∠MAD = ∠NAD (cmt)

AM = AN (gt)

⇒ ∆ADM = ∆ADN (c-g-c)

11 tháng 2 2024

a. 

Xét ΔMNP có:

   MN > MP (16 cm > 7 cm)

   MPN là góc đối diện cạnh MN

   MNP là góc đối diện cạnh MP

=> P > N (QH giữa góc và cạnh đối diện).

b.

  Xét góc ngoài Δ đỉnh P

 => 180o - P

 mà P > N (cmt)

=> 180o - N > 180o - P

=> góc ngoài đỉnh N > góc ngoài đỉnh P

Chúc Bạn Học Tốt 

12 tháng 2 2024

Bài 5

P(x) + Q(x) = (2x³ - x² + 5x - 7) + (x³ + 3x² - 4x + 1)

= 2x³ - x² + 5x - 7 + x³ + 3x² - 4x + 1

= (2x³ + x³) + (-x² + 3x²) + (5x - 4x) + (-7 + 1)

= 3x³ + 2x² + x - 6

--------

P(x) - Q(x) = (2x³ - x² + 5x - 7) - (x³ + 3x² - 4x + 1)

= 2x³ - x² + 5x - 7 - x³ - 3x² + 4x - 1

= (2x³ - x³) + (-x² - 3x²) + (5x + 4x) + (-7 - 1)

= x³ - 4x² + 9x - 8

--------

Tại x = 2

Q(2) = 2³ + 3.2² - 4.2 + 1

= 8 + 12 - 8 + 1

= 13

11 tháng 2 2024

a; Xét tam giác ABD và tam giác EBD có:

 \(\widehat{ABD}\) = \(\widehat{EBD}\) (vì BD là phân giác góc ABC)

   AB = BE (gt)

Cạnh BD chung

⇒ \(\Delta\)ABD = \(\Delta\)EBD (c-g-c) 

\(\widehat{BED}\) = \(\widehat{BAD}\) = 900

⇒DE  \(\perp\) BC 

b; Xét tam giác BEF và tam giác ABC có:

\(\widehat{BAC}\)  = \(\widehat{BEF}\) = 900

AB = BE (gt)

\(\widehat{ABE}\) chung

⇒ \(\Delta\)FBE = \(\Delta\)CBA (g-c-g)

⇒ BC = BF

BC = BE + EC = AB + AF

⇒ AF = EC

c; Xét tam giác BCF có BC = BF (cmt)

⇒ \(\Delta\)BCF cân tại B 

BD là phân giác của góc B ⇒ BD là trung tuyến tam giác BCF

⇒BD \(\equiv\) BI ⇒ B;D;I thẳng hằng (vì qua một đỉnh chỉ kẻ được một đường trung tuyến của tam giác)

d; \(\widehat{AEB}\) = \(\widehat{EAC}\) + \(\widehat{ECA}\) (góc ngoài của tam giác bằng hai góc trong không kề với nó)

 Xét tam giác ABE có: AB = BE (gt)

⇒ \(\Delta\)ABE cân tại B 

⇒ \(\widehat{BAE}\) = \(\widehat{AEB}\) = \(\widehat{EAC}\) + \(\widehat{ECA}\) (đpcm)