Tính A, biết A=\(\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{1}{120}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{3}{8}=\dfrac{3\cdot5}{8\cdot5}=\dfrac{15}{40};\dfrac{2}{5}=\dfrac{2\cdot8}{5\cdot8}=\dfrac{16}{40}\)
mà 15<16
nên \(\dfrac{3}{8}< \dfrac{2}{5}\)
3/8= 3.5/ 8.5= 15/40
2/5= 2.8/ 5.8= 16/40
16/40 > 15/40 => 2/5 > 3/8 đẹp zai :)
g. \(-\dfrac{2}{3}\times\dfrac{4}{5}+\dfrac{1}{5}\div\dfrac{9}{11}=-\dfrac{8}{15}+\dfrac{1}{5}\times\dfrac{11}{9}=-\dfrac{8}{15}+\dfrac{11}{45}=\dfrac{24}{45}+\dfrac{11}{45}=\dfrac{35}{45}=\dfrac{7}{9}\)
h.
\(\left(-6,2\div2+3,7\right)\div0,2=\left(-3,1+3,7\right)\div0,2=0,6\div0,2=3\)
k.
\(\dfrac{2}{3}+\dfrac{1}{5}\times\dfrac{10}{7}=\dfrac{2}{3}+\dfrac{10}{35}=\dfrac{2}{3}+\dfrac{2}{7}=\dfrac{14}{21}+\dfrac{6}{21}=\dfrac{20}{21}\)
m.
\(\dfrac{2}{7}+\dfrac{5}{7}\times\dfrac{14}{25}=\dfrac{2}{7}+\dfrac{1\times2}{1\times5}=\dfrac{2}{7}+\dfrac{2}{5}=\dfrac{10}{35}+\dfrac{14}{35}=\dfrac{24}{35}\)
\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}=1-\dfrac{1}{2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)
...
\(\dfrac{1}{2021^2}< \dfrac{1}{2020\cdot2021}=\dfrac{1}{2020}-\dfrac{1}{2021}\)
Do đó: \(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2021^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2020}-\dfrac{1}{2021}\)
=>\(B< 1-\dfrac{1}{2021}< 1\)
???????????????????.?????????????????????????????????????????????¿??????????????¿????????????????????????????????????
12345678910
a: \(4n-5⋮n\)
=>\(-5⋮n\)
=>\(n\in\left\{1;-1;5;-5\right\}\)
b: \(-11⋮n-1\)
=>\(n-1\inƯ\left(-11\right)\)
=>\(n-1\in\left\{1;-1;11;-11\right\}\)
=>\(n\in\left\{2;0;12;-10\right\}\)
Ta có:
Sửa đề:
1/(3.5) + 1/(5.7) + 1/(7.9) + ... + 1/(99.101)
= 1/2 . (1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + ... + 1/99 - 1/101)
= 1/2 . (1/3 - 1/101)
= 1/2 . 98/303
= 49/303
Ta có:
303 > 300
⇒ 49/303 < 49/300 (1)
Mà 49 < 50
⇒ 49/300 < 50/300 = 1/6 (2)
Từ (1) và (2) ⇒ 49/303 < 1/6
Vậy 1/(3.5) + 1/(5.7) + 1/(7.9) + ... + 1/(99.101) < 1/6
a) 2/(2.5) + 2/(5.8) + 2/(8.11) + ... + 2/(98.101)
= 2/3 . (1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 + ... + 1/98 - 1/101)
= 2/3 . (1/2 - 1/101)
= 2/3 . 99/202
= 33/101
b) 1/(4.7) + 1/(7.10) + 1/(10.13) + ... + 1/(94.97) + 1/(97.100)
= 1/3 . (1/4 - 1/7 + 1/7 - 1/10 + 1/10 - 1/13 + ... + 1/94 - 1/97 + 1/97 - 1/100)
= 1/3 . (1/4 - 1/100)
= 1/3 . 6/25
= 2/25
Ta có:
\(A=\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{1}{120}\)
\(A=\dfrac{2}{20}+\dfrac{2}{30}+\dfrac{2}{42}+...+\dfrac{2}{240}\)
\(A=\dfrac{2}{4.5}+\dfrac{2}{5.6}+\dfrac{2}{6.7}+...+\dfrac{2}{15.16}\)
\(A=2.\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{15.16}\right)\)
\(A=2.\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)\)
\(A=2.\left(\dfrac{1}{4}-\dfrac{1}{16}\right)\)
\(A=2.\left(\dfrac{4}{16}-\dfrac{1}{16}\right)\)
\(A=2.\dfrac{3}{16}\)
\(A=\dfrac{3}{8}\)
Vậy A = \(\dfrac{3}{8}\)
\(A=\dfrac{1}{10}+\dfrac{1}{15}+...+\dfrac{1}{120}\)
\(=\dfrac{2}{20}+\dfrac{2}{30}+...+\dfrac{2}{240}\)
\(=2\left(\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{15\cdot16}\right)\)
\(=2\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)\)
\(=2\left(\dfrac{1}{4}-\dfrac{1}{16}\right)=2\cdot\dfrac{3}{16}=\dfrac{3}{8}\)