K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2019

viết thế nay bố ai hiểu được

27 tháng 7 2019

bạn kì quá ko giúp thì thôi còn phàn nàn. 

27 tháng 7 2019

Câu hỏi của Trần Thanh Phương - Toán lớp 9 | Học trực tuyến

Tự lực cánh sinh thôi...

19 tháng 1 2021

linh ta linh tinh

27 tháng 7 2019

\(\frac{a^4}{a^3+2b^3}=a-\frac{2ab^3}{a^3+b^3+b^3}\ge a-\frac{2ab^3}{3ab^2}=a-\frac{2}{3}b\)

tương tự cộng lại ta có đpcm 

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=d\)

26 tháng 7 2019

Xét tứ giác AFDC có:

AFC =90 , ADC=90(gt)

mà 2 góc này cùng nhìn cạnh AC

nên tứ giác AFDC nội tiếp đường tròn đường kính AC hay A,C,D,F cùng thuộc một đường tròn

Xét tứ giác AEHF có"

AFH =90 AEH=90(gt)

AFH+AEH =180

mà 2 góc này nằm ở vị trí đối nhau

nên tứ giác AEHF nội tiếp đường tròn đường kính AH 

hay A,F,H,E cùng thuộc một đường tròn

 

25 tháng 7 2019

Câu 1:

a,Bạn tự vẽ

b,Phương trình hoành độ giao điểm của (d1) và (d2) là:

\(\(\(-2x+3=x-1\Rightarrow-3x=-4\Rightarrow x=\frac{4}{3}\)\)\)

\(\(\(\Rightarrow y=\frac{4}{3}-1=\frac{1}{3}\)\)\)

Vậy tọa độ giao điểm của (d1) và (d2) là \(\(\(\left(\frac{4}{3};\frac{1}{3}\right)\)\)\)

c,Đường thẳng (d3) có dạng: y = ax + b

Vì (d3) song song với (d1) \(\(\(\Rightarrow\hept{\begin{cases}a=a'\\b\ne b'\end{cases}}\Rightarrow\hept{\begin{cases}a=-2\\b\ne3\end{cases}}\)\)\)

Khi đó (d3) có dạng: y = -2x + b

Vì (d3) đi qua điểm A( -2 ; 1) nên \(\(\(\Rightarrow x=-2;y=1\)\)\)

Thay x = -2 ; y = 1 vào (d3) ta được:\(\(\(1=-2.\left(-2\right)+b\Rightarrow b=-3\)\)\)

Vậy (d3) có phương trình: y = -2x - 3

Câu 2:

\(A=\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\frac{1}{\sqrt{a}-\sqrt{b}}\left(a>0;b>0;a\ne b\right)\)(Đề chắc phải như này)

\(\(\(=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}.\frac{\sqrt{a}-\sqrt{b}}{1}\)\)\)

\(\(\(=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)\)\)\)

\(\(\(=\sqrt{a}^2-\sqrt{b}^2\)\)\)

\(\(\(=a-b\)\)\)

26 tháng 7 2019

ĐK: x-y>0

pt (2) <=> \(x^2+y^2-\frac{8xy}{x-y}=16\)

<=> \(x^2+y^2-2xy-\frac{8xy}{x-y}-16+2xy=0\)

<=> \(\left(x-y\right)^2-\frac{8xy}{x-y}-16+2xy=0\)

<=> \(\left(x-y\right)^3-16\left(x-y\right)+2xy\left(x-y\right)-8xy=0\)

<=> \(\left(x-y\right)\left(x-y-4\right)\left(x-y+4\right)+2xy\left(x-y-4\right)=0\)

<=> \(\left(x-y-4\right)\left[\left(x-y\right)\left(x-y+4\right)+2xy\right]=0\)(a)

Vì \(\left(x-y\right)\left(x-y+4\right)+2xy=\left(x-y\right)^2+4\left(x-y\right)+2xy=x^2+y^2+4\left(x-y\right)>0\)

Nên (a) <=> \(x-y-4=0\Leftrightarrow x=y+4\)thế vào pt (1) ta có:

\(\sqrt{4}+9=2y^2-\left(y+4\right)\Leftrightarrow2y^2-y-15=0\)

Em làm tiếp nhé! giải đen ta ra nghiệm đẹp.

Vì \(0\le a,b,c,d\le1\Rightarrow abc+1\ge abcd+1\)

\(\Rightarrow VT\le\frac{a+b+c+c}{abcd+1}\)

Do \(\hept{\begin{cases}\left(1-a\right)\left(1-b\right)\ge0\\\left(1-c\right)\left(1-d\right)\ge0\\\left(1-ab\right)\left(1-cd\right)\ge0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a+b\le1+ab\\c+d\le1+cd\\ab+cd\le1+abcd\end{cases}}\)

\(\Rightarrow a+b+c+d\le2+ab+cd\le2+1+abcd=3+abcd\)

Vậy \(VT\le\frac{3+abcd}{1+abcd}\le\frac{3\left(1+abcd\right)}{1+abcd}=3\)

Dấu "=" xảy ra khi a=0,b=c=d=1

Cho x,y>0 thỏa mãn x3+y3=x−y. Chứng minh: x2+y2<1.

Cho x,y>0x,y>0 thỏa mãn x3+y3=x−y. Chứng minh: x2+y2<1.

.............................