tìm giá trị nhỏ nhất 2*lx-2021l+lx-2023l
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(x,y,z\) lần lượt là các chiều dài của mảnh thứ nhất, thứ 2, thứ 3
Mà diện tích của 3 mảnh bằng nhau nên: \(0,6x=0,8y=1,2z\)
\(\Rightarrow\dfrac{0,6x}{2,4}=\dfrac{0,8y}{2,4}=\dfrac{1,2z}{2,4}\Rightarrow\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{2}\)
Tổng chiều dài của 3 mảnh là \(7,2\) nên \(\Rightarrow x+y+z=7,2\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{2}=\dfrac{x+y+z}{4+3+2}=\dfrac{7,2}{9}=0,8\)
Chiều dài của mảnh thứ nhất là:
\(x=4\cdot0,8=3,2\left(m\right)\)
Gọi 3 cạnh của tam giác lần lượt là a,b,c, khi đó:
\(\dfrac{a}{4}=\dfrac{b}{6}=\dfrac{c}{7}=\dfrac{a+b+c}{4+6+7}=\dfrac{136}{17}=8\)
\(\Rightarrow a=8\cdot4=32\left(cm\right)\)
\(\Rightarrow b=8\cdot6=48\left(cm\right)\)
\(\Rightarrow c=8\cdot7=56\left(cm\right)\)
Vậy cạnh lớn nhất là 56 cm
a; A(\(x\)) = \(x^5\) - 2\(x^4\) + \(x^2\) - \(x\) + 1
A(\(x\)) = \(x^5\) - 2\(x^4\) + \(x^2\) - \(x\) + 1
B(\(x\)) = 6 - 2\(x\) - 3\(x^3\) + \(x^4\) - 3\(x^5\)
B(\(x\)) = -3\(x^5\) + \(x^4\) - 3\(x^3\) - 2\(x\) + 6
b; A(\(x\)) + B(\(x\)) = \(x^5\) - 2\(x^4\) + \(x^2\) - \(x\) + 1 + \(x^4\) - 3\(x^5\) - 3\(x^3\) - 2\(x\) + 6
A(\(x\)) + B(\(x\)) = (\(x^5\) - 3\(x^5\)) - (2\(x^4\) - \(x^4\)) - 3\(x^3\) + \(x^2\) - (\(x+2x\)) + (1+6)
A(\(x\)) + B(\(x\)) = -2\(x^5\) - \(x^4\) - 3\(x^3\) + \(x^2\) - 3\(x\) + 7
a) Sắp xếp:
\(P\left(x\right)=2x^3+2x-3x^2+1=2x^3-3x^2+2x+1\)
\(Q\left(x\right)=2x^2+3x^2-x-5=5x^2-x-5\)
b) \(P\left(x\right)+Q\left(x\right)=\left(2x^3-3x^2+2x+1\right)+\left(5x^2-x-5\right)\)
\(=2x^3+\left(-3x^2+5x^2\right)+\left(2x-x\right)+\left(1-5\right)\)
\(=2x^3+2x^2+x-4\)
c) \(P\left(x\right)-Q\left(x\right)=\left(2x^3-3x^2+2x+1\right)-\left(5x^2-x-5\right)\)
\(=2x^3+\left(-3x^2-5x^2\right)+\left(2x+x\right)+\left(1+5\right)\)
\(=2x^3-7x^2+3x+4\)
a; A(\(x\)) = 5\(x\) - \(x^3\) - 15 + 4\(x^2\)
A(\(x\)) = - \(x^3\) + 4\(x^2\) - 5\(x\) - 15
B(\(x\)) = 4\(x^2\) + 2\(x^3\) + 5\(x\) + 17
B(\(x\)) = 2\(x^3\) + 4\(x^2\) + 5\(x\) + 17
a) Sắp xếp:
\(A\left(x\right)=5x-x^3-15+4x^2=-x^3+4x^2+5x-15\)
\(B\left(x\right)=4x^2+2x^3+17+5x=2x^3+4x^2+5x+17\)
b) \(A\left(x\right)+B\left(x\right)=\left(-x^3+4x^2+5x-15\right)+\left(2x^3+4x^2+5x+17\right)\)
\(=\left(-x^3+2x^3\right)+\left(4x^2+4x^2\right)+\left(5x+5x\right)+\left(-15+17\right)\)
\(=x^3+8x^2+10x+2\)
\(A\left(x\right)-B\left(x\right)=\left(-x^3+4x^2+5x-15\right)-\left(2x^3+4x^3+5x+17\right)\)
\(=\left(-x^3-2x^3\right)+\left(4x^2-4x^2\right)+\left(5x-5x\right)+\left(-15-17\right)\)
\(=-3x^3-32\)
\(\dfrac{x^2}{y}=3\) và \(\dfrac{x}{y}=21\) \(\left(ĐKXĐ:x,y>0\right)\)
\(\Rightarrow\dfrac{x^2}{y}:\dfrac{x}{y}=\dfrac{3}{21}=\dfrac{1}{7}\)
\(\Rightarrow\dfrac{x^2}{y}\cdot\dfrac{y}{x}=\dfrac{1}{7}\)
\(\Rightarrow x=\dfrac{1}{7}.\)
Khi đó: \(y=\dfrac{x}{21}=\dfrac{1}{7}:21=\dfrac{1}{7}\cdot\dfrac{1}{21}=\dfrac{1}{147}\)
\(\Rightarrow y=\dfrac{1}{147}\)
Vậy \(\left(x;y\right)=\left(\dfrac{1}{7};\dfrac{1}{147}\right)\)
a; Xét tam giác vuông ABD và tam giác vuông EBD có
\(\widehat{ABD}\) = \(\widehat{EBD}\) (vì BD là phân giác của góc B)
Cạnh BD chung
⇒\(\Delta\)ABD = \(\Delta\)EBD (cạnh huyền góc nhọn)
⇒ BA = BE (đpcm)
b; BA = BE (cmt)
⇒\(\Delta\)ABE cân tại B
BD là phân giác góc ABE
⇒ BD là đường trung trực của AE vì trong tam giác đường phân giác cũng là đường trung trực)
c; BD \(\perp\)BH (gt)
BD \(\perp\)AE (cmt)
⇒ BH//AE (vì hai đường thẳng cùng vuông góc với đường thẳng thứ ba thì song song với nhau)
Xét tứ giác ABHE có
BH//AE (cmt)
BH = AE (gt)
⇒ Tứ giác ABHE là hbh (vì tứ giác có một cặp cạnh đối diện song song và bằng nhau thì tứ giác đó là hình hình bình hành)
⇒ AB//HE
⇒ AC \(\perp\) HE (Vì một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó vuông góc với đường thẳng còn lại.)
d; Tứ giác ABHE là hình bình hành
O là trung điểm BE
⇒ O là trung điểm của AH
Vì hình bình hành có hai đường chéo cắt nhau tại trung điểm mỗi đường.
⇒ A; O; H thẳng hàng (đpcm)
Để biểu thức trên đạt giá trị nhỏ nhất thì \(\left|x-2021\right|or\left|x-2023\right|\) đạt giá trị nhỏ nhất
TH1: \(GTNN:\left|x-2021\right|=0\) tại \(x=2021\)
Khi đó biểu thức trên có giá trị: \(2\cdot\left|2021-2021\right|+\left|2021-2023\right|=2\)
TH2: \(GTNN:\left|x-2023\right|=0\) tại \(x=2023\)
Khi đó biểu thức trên có giá trị: \(2\cdot\left|2023-2021\right|+\left|2023-2023\right|=4\)
Trường hợp 1 cho ra giá trị nhỏ nhất của biểu thức, vậy giá trị nhỏ nhất của \(2\cdot\left|x-2021\right|+\left|x-2023\right|=2\) tại \(x=2021\)