Dựa vào đấu hiệu nào để phân biệt phân tử của đơn chất và phân tử của hợp chất?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6, \(x^2y+xy^2-4x-4y=xy\left(x+y\right)-4\left(x+y\right)=\left(xy-4\right)\left(x+y\right)\)
7, \(10ax-5ay-2x+y=5a\left(2x-y\right)-\left(2x-y\right)=\left(5a-1\right)\left(2x-y\right)\)
8, xem lại đề bạn nhé
9, \(4x^2-y^2+8y-16=4x^2-\left(y^2-8y+16\right)=4x^2-\left(y-4\right)^2\)
\(=\left(2x-y+4\right)\left(2x+y-4\right)\)
Trả lời:
6, x2y + xy2 - 4x - 4y = ( x2y + xy2 ) - ( 4x + 4y ) = xy ( x + y ) - 4 ( x + y ) = ( x + y )( xy - 4 )
7, 10ax - 5ay - 2x + y = ( 10ax - 5ay ) - ( 2x - y ) = 5a ( 2x - y ) - ( 2x - y ) = ( 2x - y )( 5a - 1 )
8, Sửa đề: x3 - 2x2 + 2x - 4 = ( x3 - 2x2 ) + ( 2x - 4 ) = x2 ( x - 2 ) + 2 ( x - 2 ) = ( x - 2 )( x2 + 2 )
9, 4x2 - y2 + 8y - 16 = 4x2 - ( y2 - 8y + 16 ) = 4x2 - ( y - 4 )2 = ( 2x - y + 4 )( 2x + y - 4 )
1, \(x^2\left(x-3\right)-4x+12=x^2\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x-2\right)\left(x+2\right)\left(x-3\right)\)
2, \(2a\left(x+y\right)-x-y=2a\left(x+y\right)-\left(x+y\right)=\left(2a-1\right)\left(x+y\right)\)
3, \(2x-4+5x^2-10x=2\left(x-2\right)+5x\left(x-2\right)=\left(2+5x\right)\left(x-2\right)\)
4, sửa đề :
\(6x^2-12x-7x+14=6x\left(x-2\right)-7\left(x-2\right)=\left(6x-7\right)\left(x-2\right)\)
5, \(xy-y^2-3x+3y=y\left(x-y\right)-3\left(x-y\right)=\left(y-3\right)\left(x-y\right)\)
a) x2(x-3)-4x+12
=x2(x-3)-4(x-3)
=(x-3)(x2-4)
=(x-3)(x-2)(x+2)
b) 2a(x+y)-x-y
=2a(x+y)-(x+y)
=(x+y)(2a-1)
c) 2x-4+5x2-10x
=2(x-2)+5x(x-2)
=(x-2)(2+5x)
d) 5x2-12x-7x+14
=5x2-19x+14
e) xy-y2-3x+3y
=y(x-y)-3(x-y)
=(x-y)(y-3)
#H
\(m_{H_2O}=1.450=450g\)
\(m_{dd}=450+50=500g\)
\(C\%_{BaCl_2}=\frac{m.100\%}{m_{dd}}=\frac{50.100\%}{500}=10\%\)
D = x2 + 4xy + 4y2 - z2 + 2xt - t2
= (x + 2y)2 - (z - t)2
= (x + 2y - z + t)(x + 2y + z - t)
Thay x = 10 ; y = 40 ; z = 30 ; t = 20 vào D
\(\Rightarrow D=\left(10+40.2-30+20\right)\left(10+40.2+30-20\right)=80.100=8000\)
D = x\(^2\) + 4xy + 4y \(^2\) - z \(^2\) + 2zt - t \(^2\)
D = (x + 2y)\(^2\) - z\(^2\)+ z\(^2\) + 2zt + t\(^2\) - t\(^2\)
D = (10 + 80)\(^2\) - 30\(^2\) + (z + t)\(^2\) - 20\(^2\)
D = 90\(^2\) - 900 - 900 + (30 + 20)\(^2\) - 400
D = 8100 - 900 + 2500 - 400
D =8600
HT
\(A=x\left(x+2\right)\left(x+4\right)\left(x+6\right)+8\)
\(=\left(x^2+6x\right)\left(x^2+6x+8\right)+8\)
\(=\left(x^2+6x+4\right)^2-4^2+8\)
\(=\left(x^2+6x+4\right)^2-8\ge-8\)
Dấu \(=\)khi \(x^2+6x+4=0\Leftrightarrow x=-3\pm\sqrt{5}\).
\(B=5+\left(1-x\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=5-\left[\left(x-1\right)\left(x+6\right)\right].\left[\left(x+2\right)\left(x+3\right)\right]\)
\(=5-\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=5-\left(x^2+5x\right)^2+6^2\)
\(=41-\left(x^2+5x\right)^2\le41\)
Dấu \(=\)khi \(x^2+5x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
\(C=\left(x+3\right)^4+\left(x-7\right)^4=\left[\left(x-2\right)+5\right]^4+\left[\left(x-2\right)-5\right]^4\)
\(=2\left(x-2\right)^4+300\left(x-2\right)^2+1250\ge1250\)
Dấu \(=\)khi \(x-2=0\Leftrightarrow x=2\).
C. Nguyên tử cùng loại hay khác loại.
→ Phân tử của hợp chất sẽ được tạo nên từ 2 hay nhiều loại nguyên tố hóa học trở lên
HT
con chí tên "ღᏠᎮღᐯâ几ঔ卂几卄⁀ᶜᵘᵗᵉ"