cho bt A:
A=\(\left[\text{}\text{}\text{}\text{}\text{}\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\right)+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right]:\left(\dfrac{x-2}{x-\sqrt{x}-2}-1\right)\)
a,Rút gọn A
b,Tìm x để P=2A-\(\dfrac{1}{x}\) đạt giá trị lớn nhất
\(ĐKXĐ:x>0;x\ne4;x\ne9\)
\(A=\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right):\left(\dfrac{x-2}{x-\sqrt{x}-2}-1\right)\)
\(=\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}:\dfrac{x-2-\left(x-\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-9-\left(x-4\right)+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}:\dfrac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}:\dfrac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{1}{\sqrt{x-2}}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
b. \(P=2A-\dfrac{1}{x}=\dfrac{2\sqrt{x}+2}{\sqrt{x}}-\dfrac{1}{x}=2+\dfrac{2}{\sqrt{x}}-\dfrac{1}{x}\)
- Đặt \(t=\dfrac{1}{\sqrt{x}}\left(t>0\right)\). Khi đó:
\(P=2+2t-t^2=-\left(t^2-2t+1\right)+3=-\left(t-1\right)^2+3\le3\)
- Dấu "=" xảy ra khi \(\left(t-1\right)^2=0\Leftrightarrow t=1\Leftrightarrow\dfrac{1}{\sqrt{x}}=1\Leftrightarrow x=1\left(tmĐKXĐ\right)\)
- Vậy \(MaxP=3\), đạt tại \(x=1\)