1. Thực hiện phép tính: (x2 + 2xy - 3)(-xy2)
2. Tìm x biết: 3x(x + 2) - 3x2 - 12 =0
3. Làm tính nhân: (2x3 - \(\dfrac{9}{2}x^2\) + \(\dfrac{1}{xy}\)) x2y3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:Ta có: \(\widehat{xAm}+\widehat{yAn}=130^0\)
mà \(\widehat{xAm}=\widehat{yAn}\)(hai góc đối đỉnh)
nên \(\widehat{xAm}=\widehat{yAn}=\dfrac{130^0}{2}=65^0\)
Ta có: \(\widehat{xAm}+\widehat{xAn}=180^0\)(hai góc kề bù)
=>\(\widehat{xAn}+65^0=180^0\)
=>\(\widehat{xAn}=115^0\)
=>\(\widehat{yAm}=115^0\)
Bài 2:
Ta có: \(\widehat{xOz}+\widehat{zOt}+\widehat{tOy}=220^0\)
=>\(\widehat{xOz}+\widehat{tOy}=40^0\)
mà \(\widehat{xOz}=\widehat{tOy}\)(hai góc đối đỉnh)
nên \(\widehat{xOz}=\widehat{tOy}=\dfrac{40^0}{2}=20^0\)
Ta có: \(\widehat{xOz}+\widehat{xOt}=180^0\)(hai góc kề bù)
=>\(\widehat{xOt}=180^0-20^0=160^0\)
=>\(\widehat{yOz}=160^0\)
Bài 1:
a: \(\dfrac{2}{3}-\dfrac{7}{6}+\dfrac{5}{2}=\dfrac{4}{6}-\dfrac{7}{6}+\dfrac{15}{6}=\dfrac{12}{6}=2\)
b: \(9-2023^0+\sqrt{\dfrac{1}{25}}=9-1+\dfrac{1}{5}=8+\dfrac{1}{5}=8,2\)
c: \(\dfrac{4^{1010}\cdot9^{1010}}{3^{2019}\cdot16^{504}}=\dfrac{4^{1010}}{4^{1008}}\cdot\dfrac{3^{2020}}{3^{2019}}=\dfrac{3}{4^8}\)
Bài 3:
Tổng số tiền phải trả cho 1 bánh cỡ to, 2 bánh cỡ vừa, 1 bánh cỡ nhỏ là:
\(300000+250000\cdot2+200000=1000000\left(đồng\right)\)
=>bác Lan đủ tiền mua
Bài 2:
a: \(x-0,5=\dfrac{5}{6}\)
=>\(x=\dfrac{5}{6}+\dfrac{1}{2}=\dfrac{5}{6}+\dfrac{3}{6}=\dfrac{8}{6}=\dfrac{4}{3}\)
b: \(\left|x-1\right|+\dfrac{1}{2}=\dfrac{3}{2}\)
=>\(\left|x-1\right|=\dfrac{3}{2}-\dfrac{1}{2}=\dfrac{2}{2}=1\)
=>\(\left[{}\begin{matrix}x-1=1\\x-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)
\(|x^2|x+\dfrac{3}{4}||=x^2\)
=>\(x^2\cdot\left|x+\dfrac{3}{4}\right|=x^2\)
=>\(\left|x+\dfrac{3}{4}\right|=1\)
=>\(\left[{}\begin{matrix}x+\dfrac{3}{4}=1\\x+\dfrac{3}{4}=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=-\dfrac{7}{4}\end{matrix}\right.\)
|\(x^2\).|\(x+\dfrac{3}{4}\)| |= \(x^2\)
\(x^2\).|\(x+\dfrac{3}{4}\)| = \(x^2\)
\(x^2\).|\(x+\dfrac{3}{4}\)| - \(x^2\) = 0
\(x^2\).(|\(x+\dfrac{3}{4}\)| - 1) = 0
\(\left[{}\begin{matrix}x=0\\\left|x+\dfrac{3}{4}\right|=1\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x+\dfrac{3}{4}=-1\\x+\dfrac{3}{4}=1\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-\dfrac{7}{4}\\x=\dfrac{1}{4}\end{matrix}\right.\)
Vậy \(x\) \(\in\) { - \(\dfrac{7}{4}\); 0; \(\dfrac{1}{4}\)}
\(\dfrac{5}{x}-\dfrac{2}{y}=\dfrac{3}{2}\)
=>\(\dfrac{5x-2y}{xy}=\dfrac{3}{2}\)
=>2(5x-2y)=3xy
=>10x-4y-3xy=0
=>10x-3xy-4y=0
=>x(10-3y)-4y=0
=>\(-3x\left(y-\dfrac{10}{3}\right)-4y+\dfrac{40}{3}=0\)
=>\(-3x\left(y-\dfrac{10}{3}\right)-4\left(y-\dfrac{10}{3}\right)=0\)
=>\(\left(-3x-4\right)\left(y-\dfrac{10}{3}\right)=0\)
=>\(\left\{{}\begin{matrix}-3x-4=0\\y-\dfrac{10}{3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{4}{3}\\y=\dfrac{10}{3}\end{matrix}\right.\)
\(\left|\dfrac{4}{3}x-\dfrac{1}{4}\right|>=0\forall x\)
=>\(\left|\dfrac{4}{3}x-\dfrac{1}{4}\right|-\dfrac{2}{11}>=-\dfrac{2}{11}\forall x\)
Dấu '=' xảy ra khi \(\dfrac{4}{3}x-\dfrac{1}{4}=0\)
=>\(\dfrac{4}{3}x=\dfrac{1}{4}\)
=>\(x=\dfrac{1}{4}:\dfrac{4}{3}=\dfrac{3}{16}\)
A = |\(\dfrac{4}{3}\)\(x\) - \(\dfrac{1}{4}\)| - \(\dfrac{2}{11}\)
Vì |\(\dfrac{4}{3}\)\(x\) - \(\dfrac{1}{4}\)| ≥ 0 ∀ \(x\)
|\(\dfrac{4}{3}x\) - \(\dfrac{1}{4}\)| - \(\dfrac{2}{11}\) ≥ - \(\dfrac{2}{11}\) dấu bằng xảy ra khi : \(\dfrac{4}{3}x\) - \(\dfrac{1}{4}\) = 0
⇒ \(\dfrac{4}{3}\)\(x\) = \(\dfrac{1}{4}\) ⇒ \(x\) = \(\dfrac{1}{4}\) : \(\dfrac{4}{3}\) ⇒ \(x\) = \(\dfrac{3}{16}\)
Vậy giá trị nhỏ nhất của biểu thức là - \(\dfrac{2}{11}\) khi \(x=\dfrac{3}{16}\)
Sửa đề: \(\dfrac{1}{5}< \dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4}\)
Đặt \(A=\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)
\(\dfrac{1}{5}-\dfrac{1}{6}< \dfrac{1}{5\cdot6}< \dfrac{1}{5^2}< \dfrac{1}{4\cdot5}=\dfrac{1}{4}-\dfrac{1}{5}\)
\(\dfrac{1}{6}-\dfrac{1}{7}< \dfrac{1}{6\cdot7}< \dfrac{1}{6^2}< \dfrac{1}{5\cdot6}=\dfrac{1}{5}-\dfrac{1}{6}\)
...
\(\dfrac{1}{100}-\dfrac{1}{101}=\dfrac{1}{100\cdot101}< \dfrac{1}{100^2}< \dfrac{1}{100\cdot99}=\dfrac{1}{99}-\dfrac{1}{100}\)
Do đó: \(\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{101}< \dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
=>\(\dfrac{1}{5}-\dfrac{1}{101}< A< \dfrac{1}{4}-\dfrac{1}{100}\)
=>\(\dfrac{1}{5}< A< \dfrac{1}{4}\)
A = \(\dfrac{1}{5^2}\) + \(\dfrac{1}{6^2}\) + \(\dfrac{1}{7^2}\) + ... + \(\dfrac{1}{100^2}\)
\(\dfrac{1}{5.6}\) < \(\dfrac{1}{5^2}\) < \(\dfrac{1}{4.5}\)
\(\dfrac{1}{6.7}\) < \(\dfrac{1}{6^2}\) < \(\dfrac{1}{5.6}\)
\(\dfrac{1}{7.8}\) < \(\dfrac{1}{7^2}\) < \(\dfrac{1}{6.7}\)
......................
\(\dfrac{1}{100.101}\) < \(\dfrac{1}{100^2}\) < \(\dfrac{1}{99.100}\)
Cộng vế với vế ta có:
\(\dfrac{1}{5.6}\) + \(\dfrac{1}{6.7}\) + ... + \(\dfrac{1}{100.101}\)< \(\dfrac{1}{5^2}\)+\(\dfrac{1}{6^2}\)+...+\(\dfrac{1}{100^2}\)<\(\dfrac{1}{4.5}\)+\(\dfrac{1}{5.6}\)+...+\(\dfrac{1}{99.100}\)
\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\)+\(\dfrac{1}{6}\)-\(\dfrac{1}{7}\)+\(\dfrac{1}{100}\)-\(\dfrac{1}{101}\) < \(\dfrac{1}{5^2}\)+\(\dfrac{1}{6^2}\)+...+\(\dfrac{1}{100^2}\)< \(\dfrac{1}{4}\)-\(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\)+...+\(\dfrac{1}{99}\)-\(\dfrac{1}{100}\)
\(\dfrac{1}{5}\) - \(\dfrac{1}{101}\) < \(\dfrac{1}{5^2}\) + \(\dfrac{1}{6^2}\)+...+\(\dfrac{1}{100^2}\) < \(\dfrac{1}{4}\) - \(\dfrac{1}{100}\)
\(\dfrac{6}{30}\) - \(\dfrac{1}{101}\) < \(\dfrac{1}{5^2}\) + \(\dfrac{1}{6^2}\)+ .... + \(\dfrac{1}{100^2}\) < \(\dfrac{1}{4}\) - \(\dfrac{1}{100}\) < \(\dfrac{1}{4}\)
\(\dfrac{5}{30}\) +( \(\dfrac{1}{30}\) - \(\dfrac{1}{101}\)) < \(\dfrac{1}{5^2}\) + \(\dfrac{1}{6^2}\) + ... + \(\dfrac{1}{100^2}\) < \(\dfrac{1}{4}\)
\(\dfrac{1}{6}\) + (\(\dfrac{1}{30}\) - \(\dfrac{1}{101}\)) < \(\dfrac{1}{5^2}\) + \(\dfrac{1}{6^2}\) + ... + \(\dfrac{1}{100^2}\) < \(\dfrac{1}{4}\)
Vì \(\dfrac{1}{30}\) > \(\dfrac{1}{101}\) ⇒ \(\dfrac{1}{30}\) - \(\dfrac{1}{101}\) > 0 ⇒ \(\dfrac{1}{6}\) + (\(\dfrac{1}{30}\) - \(\dfrac{1}{101}\)) > \(\dfrac{1}{6}\)
Vậy \(\dfrac{1}{6}\) < \(\dfrac{1}{5^2}\) + \(\dfrac{1}{6^2}\) + ... + \(\dfrac{1}{100^2}\) < \(\dfrac{1}{4}\) (đpcm)
a: \(-\dfrac{15}{19}=-1+\dfrac{4}{19}\)
\(-\dfrac{37}{41}=-1+\dfrac{4}{41}\)
\(-\dfrac{5}{9}=-1+\dfrac{4}{9}\)
\(\dfrac{23}{-27}=-\dfrac{23}{27}=-1+\dfrac{4}{27}\)
\(-\dfrac{7}{11}=-1+\dfrac{4}{11}\)
mà \(\dfrac{4}{41}< \dfrac{4}{27}< \dfrac{4}{19}< \dfrac{4}{11}< \dfrac{4}{9}\)
nên \(-\dfrac{37}{41}< -\dfrac{23}{27}< -\dfrac{15}{19}< -\dfrac{7}{11}< -\dfrac{5}{9}\)
mà \(-\dfrac{37}{41}< -\dfrac{76}{89}< -\dfrac{23}{27}\)
nên \(-\dfrac{37}{41}< -\dfrac{76}{89}< -\dfrac{23}{27}< -\dfrac{15}{19}< -\dfrac{7}{11}< -\dfrac{5}{9}\)
\(P=\left(-\dfrac{1}{7}\right)^0+\left(-\dfrac{1}{7}\right)^1+\left(-\dfrac{1}{7}\right)^2+...+\left(-\dfrac{1}{7}\right)^{2017}\)
\(\left(-\dfrac{1}{7}\right).P=\left(-\dfrac{1}{7}\right)^1+\left(-\dfrac{1}{7}\right)^2+...+\left(-\dfrac{1}{7}\right)^{2017}+\left(-\dfrac{1}{7}\right)^{2018}\)
\(P-\left(-\dfrac{1}{7}\right)P=\left(-\dfrac{1}{7}\right)^0-\left(-\dfrac{1}{7}\right)^{2018}\)
\(\dfrac{8}{7}P=1-\dfrac{1}{7^{2018}}\)
\(\dfrac{8}{7}P=\dfrac{7^{2018}-1}{7^{2018}}\)
\(P=\dfrac{7^{2018}-1}{8.7^{2017}}\)
1: \(\left(x^2+2xy-3\right)\left(-xy^2\right)\)
\(=-xy^2\cdot x^2-xy^2\cdot2xy+3\cdot xy^2\)
\(=-x^3y^2-2x^2y^3+3xy^2\)
2: \(3x\left(x+2\right)-3x^2-12=0\)
=>\(3x^2+6x-3x^2-12=0\)
=>6x-12=0
=>6x=12
=>x=2
3: \(\left(2x^3-\dfrac{9}{2}x^2+\dfrac{1}{xy}\right)\cdot x^2y^3\)
\(=2x^3\cdot x^2y^3-\dfrac{9}{2}x^2\cdot x^2y^3+\dfrac{x^2y^3}{xy}\)
\(=2x^5y^3-\dfrac{9}{2}x^4y^3+xy^2\)
2; 3\(x\)(\(x+2\)) - 3\(x^2\) - 12 = 0
3\(x^2\) + 6\(x\) - 3\(x^2\) - 12 = 0
(3\(x^2\) - 3\(x^2\)) + 6\(x\) - 12 = 0
0 + 6\(x\) - 12 = 0
6\(x\) = 12
\(x\) = 12 : 6
\(x=2\)
Vậy \(x=2\)