K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9: \(A=\dfrac{\dfrac{1}{4}-5\cdot\left(\dfrac{3}{2}\right)^2}{10\dfrac{5}{9}+\left(-\dfrac{2}{3}\right)^2}=\dfrac{\dfrac{1}{4}-5\cdot\dfrac{9}{4}}{10+\dfrac{5}{9}+\dfrac{4}{9}}\)

\(=\dfrac{\dfrac{1}{4}-\dfrac{45}{4}}{10+1}=\dfrac{-44}{4}:11=-\dfrac{44}{44}=-1\)

\(B=\dfrac{5}{12}\cdot3,7-\dfrac{5}{12}\cdot6,7=\dfrac{5}{12}\cdot\left(3,7-6,7\right)\)

\(=\dfrac{5}{12}\cdot\left(-3\right)=-\dfrac{5}{4}\)

\(A-B=\left(-1\right)-\left(-\dfrac{5}{4}\right)=-1+\dfrac{5}{4}=\dfrac{1}{4}\)

10: \(P=\left(6,8;1,36-\dfrac{29}{3}:\dfrac{58}{9}\right):\dfrac{0.27^3}{0.09^3\cdot2}\)

\(=\left(5-\dfrac{29}{3}\cdot\dfrac{9}{58}\right):\dfrac{\left(0,3\right)^6\cdot3^3}{0,3^6\cdot2}\)

\(=\left(5-\dfrac{3}{2}\right):\dfrac{3^3}{2}=\dfrac{7}{2}\cdot\dfrac{2}{27}=\dfrac{7}{27}\)

\(P+\dfrac{1}{27}=\dfrac{7}{27}+\dfrac{1}{27}=\dfrac{8}{27}=\left(\dfrac{2}{3}\right)^3\)

=>\(P+\dfrac{1}{27}\) là bình phương của một số hữu tỉ

1 tháng 7 2024

\(\dfrac{x}{\left(x+1\right)\left(x+4\right)}+\dfrac{x}{\left(x+4\right)\left(x+7\right)}+\dfrac{x}{\left(x+7\right)\left(x+10\right)}=\dfrac{x}{\left(x+1\right)\left(x+10\right)}\left(x\notin\left\{-1;-4;-7;-10\right\}\right)\\ \Leftrightarrow x\left[\dfrac{1}{\left(x+1\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+7\right)}+\dfrac{1}{\left(x+7\right)\left(x+10\right)}\right]=\dfrac{x}{\left(x+1\right)\left(x+10\right)}\\ \Leftrightarrow\dfrac{1}{3}x\left(\dfrac{1}{x+1}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+7}+\dfrac{1}{x+7}-\dfrac{1}{x+10}\right)=\dfrac{x}{\left(x+7\right)\left(x+10\right)}\\ \Leftrightarrow\dfrac{1}{3}x\left(\dfrac{1}{x+1}-\dfrac{1}{x+10}\right)=\dfrac{x}{\left(x+1\right)\left(x+10\right)}\\ \Leftrightarrow\dfrac{1}{3}x\cdot\dfrac{9}{\left(x+1\right)\left(x+10\right)}-\dfrac{x}{\left(x+1\right)\left(x+10\right)}=0\\ \Leftrightarrow\dfrac{3x}{\left(x+1\right)\left(x+10\right)}-\dfrac{x}{\left(x+1\right)\left(x+10\right)}\\ =0\\ \Leftrightarrow\dfrac{2x}{\left(x+1\right)\left(x+10\right)}=0\\ \Leftrightarrow2x=0\\ x=0\left(tm\right)\)

AH
Akai Haruma
Giáo viên
30 tháng 6 2024

Lời giải:

Gọi khối lượng đầu cá và thân cá lần lượt là $a$ và $b$ (gam). Theo bài ra ta có:

$a = \frac{1}{2}b+350$

$b=a+350$

Thay $b=a+350$ vào điều kiện ban đầu thì:

$a=\frac{1}{2}(a+350)+350$

$a=\frac{1}{2}a+525$

$\frac{1}{2}a=525$

$a=525.2=1050$

$b=a+350=1050+350=1400$ 

Khối lượng con cá: $a+b+350=1050+1400+350=2800$ (gam) hay $2,8$ kg.

 

\(15\cdot23+4\cdot3^2-5\cdot7\)

\(=15\cdot23+4\cdot9-35\)

=315+36-35

=315+1

=316

30 tháng 6 2024

15 x 23 + 4x 3^2 - 5 x 7

= 15 x 23 + 4 x 9 - 5 x 7

= 345 + 36 - 35

= 381 - 35

= 346

a: 24 trang cuối cùng chiếm:

\(1-\dfrac{1}{5}-\dfrac{2}{3}=\dfrac{1}{3}-\dfrac{1}{5}=\dfrac{2}{15}\)(tổng số trang)

Số trang của quyển truyện là \(24:\dfrac{2}{15}=24\cdot\dfrac{15}{2}=180\left(trang\right)\)

Ngày 1 Hoa đọc được:

\(180\cdot\dfrac{1}{5}=36\left(trang\right)\)

Ngày 2 Hoa đọc được:

180-36-24=120(trang)

b: Số tiền phải trả nếu không giảm giá là:

\(48000:\left(1-4\%\right)=48000:0,96=50000\left(đồng\right)\)

30 tháng 6 2024

a) Quyển truyện ban đầu có số trang là:

24 : \(\left(1-\dfrac{1}{5}-\dfrac{2}{3}\right)=180\left(trang\right)\)

Ngày thứ nhất Hoa đọc được: 

\(180\cdot\dfrac{1}{5}=45\left(trang\right)\) 

Ngày thứ hai Hoa đọc được:

\(180\cdot\dfrac{2}{3}=120\) (trang) 

b) Giá của quyển truyện ban đầu là:

\(48000:\left(100\%-4\%\right)=50000\left(đ\right)\)

30 tháng 6 2024

Do khi chia x cho 2; 3; 4; 5; 6 đều dư 1 nên x - 1 chia hết cho 2; 3; 4; 5; 6

x - 1 BC(2; 3; 4; 5; 6)

Ta có:

2 = 2

3 = 3

4 = 2²

5 = 5

6 = 2.3

⇒ BCNN(2; 3; 4; 5; 6) = 2².3.5 = 60

⇒ x - 1 ∈ BC(2; 3; 4; 5; 6) = B(60) = {0; 60; 120; 180; 240; 300; ...}

⇒ x ∈ {1; 61; 121; 181; 241; 301; ...}

Mà 301 ⋮ 7

⇒ x = 301

a: A={x∈N|x=3k+1; k∈N; 0<=k<=6}

b: B={x∈N|x=k3; 1<=k<=5}

29 tháng 6 2024

a)Mỗi phần tử đều cách nhau 3 đơn vị

b)ko biết làm

4
456
CTVHS
29 tháng 6 2024

\(a,32< 2^n< 128\)

\(=>2^5< 2^n< 2^7\)

\(=>n=6\)

Vậy...

\(b,2.16\ge2^n>4\)

\(=>2^5\ge2^n>2^2\)

\(=>n\in\left\{3;4;5\right\}\)

Vậy...

\(c,3^2.3^n=3^5\)

        \(3^n=3^5:3^2\)

        \(3^n=3^3\)

\(=>n=3\)

Vậy...

\(d,\left(2^2:4\right).2^n=4\)

     \(\left(2^2:2^2\right).2^n=4\)

                 \(1.2^n=4\)

                    \(2^n=4:1\)

                    \(2^n=4\)

              \(=>2^n=2^2\)

             \(=>n=2\)

Vậy ...

\(e,\dfrac{1}{9}.3^4.3^n=3^7\)

   \(\dfrac{1}{9}.81.3^n=3^7\)

       \(3^2.3^n=3^7\)

           \(3^n=3^7:3^2\)

           \(3^n=3^5\)

\(=>n=5\)

Vậy...

\(g,\dfrac{1}{2}.2^n+4.2^n=9.2^5\)

 \(\left(\dfrac{1}{2}+4\right).2^n=9.2^5\)

             \(\dfrac{9}{2}.2^n=9.32\)

              \(\dfrac{9}{2}.2^n=288\)

                  \(2^n=288:\dfrac{9}{2}\)

                  \(2^n=2^6\)

\(=>n=6\)

Vậy...

DT
29 tháng 6 2024

a) \(32< 2^n< 128\\ \Rightarrow2^5< 2^n< 2^7\\ \Rightarrow5< n< 7\)

Mà: \(n\inℕ^∗\)

\(\Rightarrow n=6\)

b) \(2.16\ge2^n>4\\ \Rightarrow2^1.2^4\ge2^n>2^2\\ \Rightarrow2^5\ge2^n>2^2\\ \Rightarrow5\ge n>2\)

Mà: \(n\inℕ^∗\)

\(\Rightarrow n\in\left\{5;4;3\right\}\)

c) \(3^2.3^n=3^5\\ \Rightarrow3^{n+2}=3^5\\ \Rightarrow n+2=5\\ \Rightarrow n=3\left(nhận\right)\)

 

DT
29 tháng 6 2024

\(12=2^2.3\\ 20=2^2.5\)

\(\Rightarrow UCLN\left(12,20\right)=2^2=4\)

29 tháng 6 2024

ƯCLN(12,20) = 4