K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 2 2024

\(\dfrac{x}{3}=\dfrac{2}{4}\) hay \(\dfrac{x}{3}=\dfrac{y}{4}\) em?

18 tháng 2 2024

a) Ta có tam giác MNP vuông tại M, với MN = 6 cm, MD = 3 cm, ME = 8 cm. Ta cần so sánh độ dài PD và PE.

 

Vì tam giác MNP vuông tại M, ta có hai tam giác vuông nhỏ MDP và MEP.

 

Theo định lý Pythagoras trong tam giác vuông, ta có:

- Trong tam giác MDP: MP² = MD² + DP²

=> MP = √(MD² + DP²) = √(3² + DP²) = √(9 + DP²)

- Trong tam giác MEP: MP² = ME² + EP²

=> MP = √(ME² + EP²) = √(8² + EP²) = √(64 + EP²)

 

Vì MP là đoạn thẳng cố định, nên ta có: √(9 + DP²) = √(64 + EP²)

=> 9 + DP² = 64 + EP²

=> DP² - EP² = 55

=> DP² > EP²

=> DP > EP

 

Vậy ta kết luận rằng độ dài của đoạn thẳng PD lớn hơn độ dài của đoạn thẳng PE.

 

b) Để sắp xếp các đoạn thẳng PD, PE, PN theo thứ tự có độ dài tăng dần, ta cần tính độ dài của đoạn thẳng PN.

 

Trong tam giác vuông MNP, ta áp dụng định lý Pythagoras:

PN² = MN² + MP²

=> PN = √(MN² + MP²) = √(6² + MP²) = √(36 + MP²)

 

Với MP = √(9 + DP²), ta có: PN = √(36 + 9 + DP²) = √(45 + DP²)

 

Để sắp xếp các đoạn thẳng theo thứ tự tăng dần, ta cần so sánh độ dài của chúng. Ta đã biết rằng DP > EP, nên để sắp xếp tăng dần, ta có: PE < PN < PD.

 

Vậy thứ tự các đoạn thẳng là: PE < PN < PD.

AH
Akai Haruma
Giáo viên
18 tháng 2 2024

Lời giải:

Xét tam giác $BAM$ và $CDM$ có:

$BM=CM$

$AM=DM$

$\widehat{BMA}=\widehat{CMD}$ (đối đỉnh)

$\Rightarrow \triangle BAM=\triangle CDM$ (c.g.c)

$\Rightarrow AB=CD$ và $\widehat{BAM}=\widehat{CDM}$

Mà 2 góc này ở vị trí so le trong nên $AB\parallel CD$

$AB\perp AC$ nên $CD\perp AC\Rightarrow \widehat{DCA}=90^0$

Xét tam giác $BAC$ và $DCA$ có:

$\widehat{BAC}=\widehat{DCA}=90^0$

$BA=CD$ (cmt)

$AC$ chung

$\Rightarrow \triangle BAC=\triangle DCA$ (c.g.c)

$\Rightarrow BC=DA$

$\Rightarrow BC:2=DA:2\Rightarrow BM=AM$

$\Rightarrow MBA$ cân tại $M\Rightarrow \widehat{MBA}=\widehat{MAB}$ 

Hay $\widehat{ABC}=\widehat{BAD}$

AH
Akai Haruma
Giáo viên
18 tháng 2 2024

Hình vẽ:

17 tháng 2 2024

\(a\)) Đặt \(6x=10y=15z=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{k}{6}\\y=\dfrac{k}{10}\\z=\dfrac{k}{15}\end{matrix}\right.\) \(\Rightarrow\dfrac{k}{6}+\dfrac{k}{10}+\dfrac{k}{15}=90\)
\(\Leftrightarrow\dfrac{k}{3}=90\Leftrightarrow k=270\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{270}{6}=45\\y=\dfrac{270}{10}=27\\z=\dfrac{270}{15}=18\end{matrix}\right.\)
Vậy \(x=45;y=27;z=18\)
\(b\)) Đặt \(9x=3y=2z=q\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{q}{9}\\y=\dfrac{q}{3}\\z=\dfrac{q}{2}\end{matrix}\right.\) \(\Rightarrow\dfrac{q}{9}-\dfrac{q}{3}+\dfrac{q}{2}=50\)
\(\Rightarrow\dfrac{5q}{18}=50\) \(\Leftrightarrow q=180\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{180}{9}=20\\y=\dfrac{180}{3}=60\\z=\dfrac{180}{2}=90\end{matrix}\right.\)
Vậy \(x=20;y=60;z=90\)
\(c\)) Đặt \(2x=3y=-2z=r\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{r}{2}\\y=\dfrac{r}{3}\\z=-\dfrac{r}{2}\end{matrix}\right.\) \(\Rightarrow2\cdot\dfrac{r}{2}-3\cdot\dfrac{r}{3}+4\cdot\left(-\dfrac{r}{2}\right)=48\)
\(\Leftrightarrow-2r=48\) \(\Leftrightarrow r=-24\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-24}{2}=-12\\y=\dfrac{-24}{3}=-8\\z=-\dfrac{-24}{2}=12\end{matrix}\right.\)
Vậy \(x=-12;y=-8;z=12\)
\(d\)) Đặt \(\dfrac{x+1}{3}=\dfrac{y+2}{4}=\dfrac{z+3}{5}=u\)
\(\Rightarrow\left\{{}\begin{matrix}x=3u-1\\y=4u-2\\z=5u-3\end{matrix}\right.\) \(\Rightarrow3u-1+4u-2+5u-3=30\)
\(\Leftrightarrow12u=36\) \(\Leftrightarrow u=3\)
\(\Rightarrow\left\{{}\begin{matrix}x=3\cdot3-1=8\\y=4\cdot3-2=10\\z=5\cdot3-3=12\end{matrix}\right.\)
Vậy \(x=8;y=10;z=12\)
\(e\)) Đặt \(\dfrac{x-1}{3}=\dfrac{x-2}{4}=\dfrac{z-3}{5}=p\)
\(\Rightarrow\left\{{}\begin{matrix}x=3p+1\\y=4p+2\\z=5p+3\end{matrix}\right.\) \(\Rightarrow3p+1+4p+2+5p+3=30\)
\(\Leftrightarrow12p=24\) \(\Leftrightarrow p=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=3\cdot2+1=7\\y=4\cdot2+2=10\\z=5\cdot2+3=13\end{matrix}\right.\)
Vậy \(x=7;y=10;z=13\)
\(g\)\(\left\{{}\begin{matrix}\dfrac{x}{4}=\dfrac{y}{3}\\x:y=12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x:y=\dfrac{4}{3}\\x:y=12\end{matrix}\right.\) (Vô lí)
Vậy không có giá trị \(x,y\) thỏa mãn
\(h\)) Đặt \(-6x=-15y=10z=a\)
\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{a}{6}\\y=-\dfrac{a}{15}\\z=\dfrac{a}{10}\end{matrix}\right.\) \(\Rightarrow\left(-\dfrac{a}{6}\right)\cdot\left(-\dfrac{a}{15}\right)\cdot\dfrac{a}{10}=240\)
\(\Leftrightarrow\dfrac{a^3}{900}=240\) \(\Leftrightarrow a^3=216000\) \(\Leftrightarrow a=60\)
\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{60}{6}=-10\\y=-\dfrac{60}{15}=-4\\z=\dfrac{60}{10}=6\end{matrix}\right.\)
Vậy \(x=-10;y=-4;z=6\)
\(i\)) Đặt \(-18x=-12y=24z=s\)
\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{s}{18}\\y=-\dfrac{s}{12}\\z=\dfrac{s}{24}\end{matrix}\right.\) \(\Rightarrow\left(-\dfrac{s}{18}\right)\cdot\left(-\dfrac{s}{12}\right)\cdot\dfrac{s}{24}=576\)
\(\Leftrightarrow\dfrac{s^3}{5184}=576\) \(\Leftrightarrow s^3=2985984\) \(\Leftrightarrow s=144\)
\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{144}{18}=-8\\y=-\dfrac{144}{12}=-12\\z=\dfrac{144}{24}=6\end{matrix}\right.\)
Vậy \(x=-8;y=-12;z=6\)
\(k\)\(\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{y}{2}=\dfrac{z}{5}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2y}{3}\\z=\dfrac{5y}{2}\end{matrix}\right.\)\(\Rightarrow\dfrac{2y}{3}+y+\dfrac{5y}{2}=50\)
\(\Leftrightarrow\dfrac{25y}{6}=50\) \(\Leftrightarrow y=12\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{2\cdot12}{3}=8\\z=\dfrac{5\cdot12}{2}=30\end{matrix}\right.\)
Vậy \(x=8;y=12;z=30\)
\(l\)\(\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\2y=3z\end{matrix}\right.\) \(\Rightarrow x=z=\dfrac{2y}{3}\)\(\Rightarrow\dfrac{2y}{3}+y+\dfrac{2y}{3}=49\)
\(\Leftrightarrow\dfrac{7y}{3}=49\) \(\Leftrightarrow y=21\)
\(\Rightarrow x=z=\dfrac{2\cdot21}{3}=14\)
Vậy \(x=14;y=21;z=14\).

17 tháng 2 2024

Đặt \(\dfrac{a+b}{3}=\dfrac{b+c}{4}=\dfrac{c+a}{5}=t\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=3t\\b+c=4t\\c+a=5t\end{matrix}\right.\)
\(\Rightarrow\left(a+b\right)+\left(b+c\right)+\left(c+a\right)=3t+4t+5t\)
\(\Leftrightarrow2\left(a+b+c\right)=12t\)
\(\Leftrightarrow a+b+c=6t\)
\(\left\{{}\begin{matrix}a+b=3t\\a+b+c=6t\end{matrix}\right.\) \(\Rightarrow3t+c=6t\) \(\Leftrightarrow c=3t\)
\(\left\{{}\begin{matrix}b+c=4t\\a+b+c=6t\end{matrix}\right.\) \(\Rightarrow a+4t=6t\) \(\Leftrightarrow a=2t\)
\(\left\{{}\begin{matrix}c+a=5t\\a+b+c=6t\end{matrix}\right.\) \(\Rightarrow b+5t=6t\) \(\Leftrightarrow b=t\)
Thay \(a=2t;b=t;c=3t\) vào \(M\) ta được
\(M=10\cdot2t+t-7\cdot3t+2017=20t+t-21t+2017=2017\)
Vậy \(M=2017\)

 

NV
17 tháng 2 2024

Áp dụng t/c dãy tỉ số bằng nhau:

\(\dfrac{3x-2y}{4}=\dfrac{4y-3z}{2}=\dfrac{2z-4x}{3}=\dfrac{12x-8y}{16}=\dfrac{8y-6z}{4}\)

\(=\dfrac{6z-12x}{9}=\dfrac{12x-8y+8y-6z+6z-12x}{16+4+9}=0\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3x-2y}{4}=0\\\dfrac{4y-3z}{2}=0\\\dfrac{2z-4x}{3}=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3x=2y\\4y=3z\\2z=4x\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{y}{3}=\dfrac{z}{4}\\\dfrac{z}{4}=\dfrac{x}{2}\end{matrix}\right.\)

\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{2y}{6}=\dfrac{3z}{12}=\dfrac{x-2y+3z}{2-6+12}=\dfrac{8}{8}=1\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.1=2\\y=3.1=3\\z=4.1=4\end{matrix}\right.\)

17 tháng 2 2024

Ta có: \(\dfrac{3x-2y}{4}=\dfrac{4y-3z}{2}=\dfrac{2z-4x}{3}\)

hay \(\dfrac{12x-8y}{16}=\dfrac{8y-6z}{4}=\dfrac{6z-12x}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{12x-8y}{16}=\dfrac{8y-6z}{4}=\dfrac{6z-12x}{9}=\dfrac{12x-8y+8y-6z+6z-12x}{16+4+9}=\dfrac{0}{29}=0\)

Do đó:

\(\dfrac{3x-2y}{4}=0\Rightarrow3x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\left(1\right)\)

\(\dfrac{4y-3z}{2}=0\Rightarrow4y=3z\Rightarrow\dfrac{y}{3}=\dfrac{z}{4}\left(2\right)\)

\(\dfrac{2z-4x}{3}=0\Rightarrow2z=4x\Rightarrow\dfrac{z}{4}=\dfrac{x}{2}\left(3\right)\)

Từ (1), (2) và (3) suy ra: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{12}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{12}=\dfrac{x-2y+3z}{2-6+12}=\dfrac{8}{8}=1\)

Do đó:

\(\dfrac{x}{2}=1\Rightarrow x=2.1=2\)

\(\dfrac{y}{3}=1\Rightarrow y=3.1=3\)

\(\dfrac{z}{4}=1\Rightarrow z=4.1=4\)

Vậy x = 2; y = 3; z = 4.

\(#NqHahh\)