Chứng minh bđt sau với 3u = a + b + c; 3v^2 = ab+bc+ca;abc=w3 (em ko chắc đề đúng đâu nhưng tỉ lệ đúng là 90%, bài này có được khi em khai triển bđt iran96)
\(729u^4v^2-1377u^2v^4+108v^6+306uv^2w^3-9w^6\ge0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\Delta=\) \(\left(m-2\right)^2+4.8>0\)
=> Phương trình luôn có hai nghiệm \(x_1;x_2\)phân biệt.
Áp dụng định lí Viet ta có: \(\hept{\begin{cases}x_1+x_2=-m+2\\x_1.x_2=-8\end{cases}}\)=> \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(-m+2\right)^2+16\)
Khi đó: \(Q=\left(x_1^2-1\right)\left(x_2^2-1\right)=x_1^2.x_2^2-\left(x_1^2+x_2^2\right)+1=8^2-\left(m-2\right)^2-16+1\)
\(=-\left(m-2\right)^2+49\le49\)
Vậy min Q = 49 tại m=2
bạn làm hộ mk BĐT này được ko ạ
1) CHO a,b,c là các số thực dương thỏa abc=1.Chứng minh
\(\frac{1}{\sqrt{1+8a}}+\frac{1}{\sqrt{1+8b}}+\frac{1}{\sqrt{1+8c}}>=1\)