tim x
\(\dfrac{x}{\left(x+1\right)\left(x+4\right)}\)+\(\dfrac{x}{\left(x+4\right)\left(x+7\right)}\)+\(\dfrac{x}{\left(x+7\right)\left(x+10\right)}\)=\(\dfrac{x}{\left(x+1\right)\left(x+10\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi khối lượng đầu cá và thân cá lần lượt là $a$ và $b$ (gam). Theo bài ra ta có:
$a = \frac{1}{2}b+350$
$b=a+350$
Thay $b=a+350$ vào điều kiện ban đầu thì:
$a=\frac{1}{2}(a+350)+350$
$a=\frac{1}{2}a+525$
$\frac{1}{2}a=525$
$a=525.2=1050$
$b=a+350=1050+350=1400$
Khối lượng con cá: $a+b+350=1050+1400+350=2800$ (gam) hay $2,8$ kg.
\(15\cdot23+4\cdot3^2-5\cdot7\)
\(=15\cdot23+4\cdot9-35\)
=315+36-35
=315+1
=316
15 x 23 + 4x 3^2 - 5 x 7
= 15 x 23 + 4 x 9 - 5 x 7
= 345 + 36 - 35
= 381 - 35
= 346
a: 24 trang cuối cùng chiếm:
\(1-\dfrac{1}{5}-\dfrac{2}{3}=\dfrac{1}{3}-\dfrac{1}{5}=\dfrac{2}{15}\)(tổng số trang)
Số trang của quyển truyện là \(24:\dfrac{2}{15}=24\cdot\dfrac{15}{2}=180\left(trang\right)\)
Ngày 1 Hoa đọc được:
\(180\cdot\dfrac{1}{5}=36\left(trang\right)\)
Ngày 2 Hoa đọc được:
180-36-24=120(trang)
b: Số tiền phải trả nếu không giảm giá là:
\(48000:\left(1-4\%\right)=48000:0,96=50000\left(đồng\right)\)
a) Quyển truyện ban đầu có số trang là:
24 : \(\left(1-\dfrac{1}{5}-\dfrac{2}{3}\right)=180\left(trang\right)\)
Ngày thứ nhất Hoa đọc được:
\(180\cdot\dfrac{1}{5}=45\left(trang\right)\)
Ngày thứ hai Hoa đọc được:
\(180\cdot\dfrac{2}{3}=120\) (trang)
b) Giá của quyển truyện ban đầu là:
\(48000:\left(100\%-4\%\right)=50000\left(đ\right)\)
Do khi chia x cho 2; 3; 4; 5; 6 đều dư 1 nên x - 1 chia hết cho 2; 3; 4; 5; 6
x - 1 BC(2; 3; 4; 5; 6)
Ta có:
2 = 2
3 = 3
4 = 2²
5 = 5
6 = 2.3
⇒ BCNN(2; 3; 4; 5; 6) = 2².3.5 = 60
⇒ x - 1 ∈ BC(2; 3; 4; 5; 6) = B(60) = {0; 60; 120; 180; 240; 300; ...}
⇒ x ∈ {1; 61; 121; 181; 241; 301; ...}
Mà 301 ⋮ 7
⇒ x = 301
a: A={x∈N|x=3k+1; k∈N; 0<=k<=6}
b: B={x∈N|x=k3; 1<=k<=5}
\(a,32< 2^n< 128\)
\(=>2^5< 2^n< 2^7\)
\(=>n=6\)
Vậy...
\(b,2.16\ge2^n>4\)
\(=>2^5\ge2^n>2^2\)
\(=>n\in\left\{3;4;5\right\}\)
Vậy...
\(c,3^2.3^n=3^5\)
\(3^n=3^5:3^2\)
\(3^n=3^3\)
\(=>n=3\)
Vậy...
\(d,\left(2^2:4\right).2^n=4\)
\(\left(2^2:2^2\right).2^n=4\)
\(1.2^n=4\)
\(2^n=4:1\)
\(2^n=4\)
\(=>2^n=2^2\)
\(=>n=2\)
Vậy ...
\(e,\dfrac{1}{9}.3^4.3^n=3^7\)
\(\dfrac{1}{9}.81.3^n=3^7\)
\(3^2.3^n=3^7\)
\(3^n=3^7:3^2\)
\(3^n=3^5\)
\(=>n=5\)
Vậy...
\(g,\dfrac{1}{2}.2^n+4.2^n=9.2^5\)
\(\left(\dfrac{1}{2}+4\right).2^n=9.2^5\)
\(\dfrac{9}{2}.2^n=9.32\)
\(\dfrac{9}{2}.2^n=288\)
\(2^n=288:\dfrac{9}{2}\)
\(2^n=2^6\)
\(=>n=6\)
Vậy...
a) \(32< 2^n< 128\\ \Rightarrow2^5< 2^n< 2^7\\ \Rightarrow5< n< 7\)
Mà: \(n\inℕ^∗\)
\(\Rightarrow n=6\)
b) \(2.16\ge2^n>4\\ \Rightarrow2^1.2^4\ge2^n>2^2\\ \Rightarrow2^5\ge2^n>2^2\\ \Rightarrow5\ge n>2\)
Mà: \(n\inℕ^∗\)
\(\Rightarrow n\in\left\{5;4;3\right\}\)
c) \(3^2.3^n=3^5\\ \Rightarrow3^{n+2}=3^5\\ \Rightarrow n+2=5\\ \Rightarrow n=3\left(nhận\right)\)
\(12=2^2.3\\ 20=2^2.5\)
\(\Rightarrow UCLN\left(12,20\right)=2^2=4\)
Ta có : 1, 2, 3, 4, 5, 6, 7, 8, 9, 10...
I, II, III, IV, V, VI, VII, VIII, IX, X...
Ta thấy: Để các chữ số gồm cả I và X không lặp lại quá hai lần thì có những số như:
IX, XI, XII, IXX ,XXI ,XXII
Vậy ta có thể viết được: 6 số
\(#FallenAngel\)
\(\dfrac{x}{\left(x+1\right)\left(x+4\right)}+\dfrac{x}{\left(x+4\right)\left(x+7\right)}+\dfrac{x}{\left(x+7\right)\left(x+10\right)}=\dfrac{x}{\left(x+1\right)\left(x+10\right)}\left(x\notin\left\{-1;-4;-7;-10\right\}\right)\\ \Leftrightarrow x\left[\dfrac{1}{\left(x+1\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+7\right)}+\dfrac{1}{\left(x+7\right)\left(x+10\right)}\right]=\dfrac{x}{\left(x+1\right)\left(x+10\right)}\\ \Leftrightarrow\dfrac{1}{3}x\left(\dfrac{1}{x+1}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+7}+\dfrac{1}{x+7}-\dfrac{1}{x+10}\right)=\dfrac{x}{\left(x+7\right)\left(x+10\right)}\\ \Leftrightarrow\dfrac{1}{3}x\left(\dfrac{1}{x+1}-\dfrac{1}{x+10}\right)=\dfrac{x}{\left(x+1\right)\left(x+10\right)}\\ \Leftrightarrow\dfrac{1}{3}x\cdot\dfrac{9}{\left(x+1\right)\left(x+10\right)}-\dfrac{x}{\left(x+1\right)\left(x+10\right)}=0\\ \Leftrightarrow\dfrac{3x}{\left(x+1\right)\left(x+10\right)}-\dfrac{x}{\left(x+1\right)\left(x+10\right)}\\ =0\\ \Leftrightarrow\dfrac{2x}{\left(x+1\right)\left(x+10\right)}=0\\ \Leftrightarrow2x=0\\ x=0\left(tm\right)\)