giúp mik nào
a)2n-1 chia hết cho n-3
b)CM 2+2 mũ 2+2 mũ 3+...+2 mũ 2000 chia hết cho 24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9
A=1/3-1/9
A=2/9
các câu 2;3 còn lại giống câu 1 bạn nhé
bạn thay số vào rồi làm tương tự
\(-\dfrac{49}{81}.\dfrac{27}{-77}\)
\(=\dfrac{49.27}{81.77}\)
\(=\dfrac{7.7.27}{3.27.7.11}\)
\(=\dfrac{7}{3.11}\)
\(=\dfrac{7}{33}\)
s,i,o,n
tui cx đag học lớp 6 mà qua sách 2 rồi sao giờ mới học đến đây ak bn :v
\(\dfrac{1}{2}.x+\dfrac{3}{5}.x=-\dfrac{2}{3}\\ =>x.\left(\dfrac{1}{2}+\dfrac{3}{5}\right)=-\dfrac{2}{3}\\ =>x.\left(\dfrac{5+3.2}{10}\right)=-\dfrac{2}{3}\\ =>\dfrac{11}{10}x=-\dfrac{2}{3}\\ =>x=\left(-\dfrac{2}{3}\right):\dfrac{11}{10}\\ =>x=-\dfrac{20}{33}\)
c) P = \(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\)
\(=\left(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}\right)\)
Dễ thấy \(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}>\dfrac{1}{150}+\dfrac{1}{150}+...+\dfrac{1}{150}\)(50 hạng tử)
\(\Leftrightarrow\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}>\dfrac{1}{150}.50=\dfrac{1}{3}\)(1)
Tương tự
\(\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}>\dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}\)(50 hạng tử)
\(\Leftrightarrow\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}>50.\dfrac{1}{200}=\dfrac{1}{4}\)(2)
Từ (1) và (2) ta được
\(P>\dfrac{1}{3}+\dfrac{1}{4}=\dfrac{7}{12}\)
P = \(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\)
\(=\left(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}\right)\)
\(\overline{50\text{ hạng tử }}\) \(\overline{50\text{ hạng tử }}\)
\(< \left(\dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}\right)+\left(\dfrac{1}{150}+\dfrac{1}{150}+...+\dfrac{1}{150}\right)\)
\(=\dfrac{1}{100}.50+\dfrac{1}{150}.50=\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)
\(\Rightarrow P< \dfrac{5}{6}< 1\)
CM : Gx = 16x - 15x - 1 ⋮ 225 ∀ x \(\in\) N
Phương páp phản chứng: giả sử Gx = 16x - 15x - 1 ⋮ 225 ∀ x \(\in\)N
ta có: Với x = 0 ⇒ 160 - 150 - 1 = 1 - 1 - 1 = -1 ⋮ 225 ( vô lý)
Vậy điều giả sử là sai hay việc chứng minh
Gx = 16x - 15x - 1 ⋮ 225 là điều không thể xảy ra
Bạn cần viết lại đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn. Viết ntn khó đọc quá.
P(x) = 7x + 3x - 1 \(⋮9\)
Với x = 3k + 1 (k \(\inℕ^∗\))
= 73k + 1 + 33k + 1 - 1
= 343k.3 + 27k.3 - 1
= (343k.3 - 3) + 27k.3 + 2
= 3(343k - 1) + 27k.3 + 2
= 3(343 - 1)(343k - 1 + 343k - 2 + ... + 343 + 1) + 27k.3 + 2
= 3.342(343k - 1 + 343k - 2 + ... + 343 + 1) + 27k.3 + 2
=> P(x) : 9 dư 2
Với x = 3k + 2
P(x) = 73k + 2 + 33k + 2 - 1
= 343k.49 + 27k.9 - 1
= (343k.49 - 49) + 27k.9 + 48
= 49(343k - 1) + 27k.9 + 48
= 49(343 - 1)(343k - 1 + 343k - 2 + ... + 343 + 1) + 27k.9 + 45 + 3
=> P(x) : 9 dư 3
Với x = 3k
Khi đó P(x) = 73k + 33k - 1
= (343k - 1) + 27k
= (343 - 1)(343k - 1 + 343k - 2 + ... + 343 + 1) + 27k
= 342(343k - 1 + 343k - 2 + ... + 343 + 1) + 27k \(⋮9\)
Vậy P(x) \(⋮\Leftrightarrow x⋮3\)
a)
ta có 2n-1=2(n-3)+7
2(n-3)⋮n-3;để 2n-1⋮n-3
<=>7⋮n-3
=>n-3ϵƯ(7)={1;-1;7;-7}
lập bảng
-4
vậy nϵ{4;2;10;-4}