Vẽ các tia Ox, Oy, Ot sao cho xOt=50 độ, xOy=100 độ.
a) Tính giữa xOt và xOy.
b) Tia Ot có phải tia phân giác của góc xOy không? Tại sao?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{4}{15}< \dfrac{x}{30}< \dfrac{1}{3}\)
=>\(\dfrac{8}{30}< \dfrac{x}{30}< \dfrac{10}{30}\)
=>8<x<10
=>x=9
\(\dfrac{4}{15}< \dfrac{x}{30}< \dfrac{1}{3}\\ =>\dfrac{8}{30}< \dfrac{x}{30}< \dfrac{10}{30}\\ =>8< x< 10\)
\(2x^2+4x+3\)
\(=2\left(x^2+2x+\dfrac{3}{2}\right)\)
\(=2\left(x^2+2x+1+\dfrac{1}{2}\right)\)
\(=2\left(x+1\right)^2+1>=1>0\forall x\)
Ta có:
\(2x^2+4x+3\\ =\left(2x^2+4x+2\right)+1\\ =2\left(x^2+2x+1\right)+1\\ =2\left(x+1\right)^2+1\ge1>0\)
=> Bt luôn dương
\(\dfrac{\left(\dfrac{2}{3}\right)^3\cdot\left(\dfrac{3}{4}\right)^2\cdot\left(-1\right)^5}{\left(\dfrac{2}{5}\right)\cdot\left(-\dfrac{5}{12}\right)^2}=\dfrac{\dfrac{2^3}{3^3}\cdot\dfrac{3^2}{4^2}\cdot\left(-1\right)}{\dfrac{2}{5}\cdot\dfrac{25}{144}}\)
\(=\dfrac{\dfrac{1}{2\cdot3}\cdot\left(-1\right)}{\dfrac{5}{72}}=-\dfrac{1}{6}\cdot\dfrac{72}{5}=-\dfrac{12}{5}\)
\(\dfrac{\left(-3\right)^{10}\cdot15^5}{25^3\cdot\left(-9\right)^7}=\dfrac{3^{10}\cdot3^5\cdot5^5}{5^6\cdot\left(-1\right)\cdot3^{14}}=-\dfrac{3}{5}\)
\(\dfrac{\left(-3\right)^{10}.15^5}{25^3.\left(-9\right)^7}\)
\(=\dfrac{\left(-3\right)^{10}.\left(3.5\right)^5}{\left(5^2\right)^3.\left(-3^2\right)^7}\)
\(=\dfrac{\left(-3\right)^{10}.3^5.5^5}{5^6.\left(-3\right)^{14}}\)
\(=\dfrac{1.3^5.1}{5.3^4}\)
\(=\dfrac{3}{5.1}\)
\(=\dfrac{3}{5}\)
\(N=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(=1+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)
\(=1+\dfrac{1}{2}+...+\dfrac{1}{50}-1-\dfrac{1}{2}-...-\dfrac{1}{25}\)
\(=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)
=>M=N
\(A=\left(3x+1\right)^3-\left(y-2\right)^2+\left(y-1\right)^3+\left(x+y\right)^2\)
Thay x=-1/3;y=3 vào A, ta được:
\(A=\left[3\cdot\dfrac{-1}{3}+1\right]^3-\left(3-2\right)^2+\left(3-1\right)^3+\left(-\dfrac{1}{3}+3\right)^2\)
\(=-1^2+2^3+\left(\dfrac{8}{3}\right)^2\)
\(=\dfrac{64}{9}+7=\dfrac{127}{9}\)
\(A=\left(3x+1\right).3-\left(y-2\right).2+\left(y-1\right).3+\left(x+y\right).2\\ \Leftrightarrow A=3.\left(3x+1+y-1\right)+2.\left(x+y-y+2\right)\\ \Leftrightarrow A=3.\left(3x+y\right)+2.\left(x+2\right)\)
Thay \(x=-\dfrac{1}{3};y=-3\) được:
\(A=3.\left[3.\left(-\dfrac{1}{3}\right)+\left(-3\right)\right]+2.\left[\left(-\dfrac{1}{3}\right)+2\right]\\ \Leftrightarrow A=3.\left(-1-3\right)+2.\dfrac{5}{3}\\ \Leftrightarrow A=3.\left(-4\right)+2.\dfrac{5}{3}\\ \Leftrightarrow A=-12+\dfrac{10}{3}\\ \Leftrightarrow A=-\dfrac{26}{3}\)
Vậy \(A=-\dfrac{26}{3}\) tại \(x=-\dfrac{1}{3};y=-3\)
Do trung bình cộng của 5 số đó là `246` nên số thứ ba là `246`
Số thứ nhất là: `246 - 2 = 244`
Số thứ hai là: `244 + 1 = 255`
Số thứ bốn là: `246 + 1 = 247`
Số thứ năm là: `247+1=248`
Vậy ...
trung bình cộng của 5 số tự nhiên liên tiếp cũng chính là trung bình cộng của số thứ nhất và số thứ 5
tổng số thứ nhất và số thứ 5 là:
246 x 2 = 492
hiệu của số thứ năm và số thứ nhất là: (5- 1) x 1 = 4
số thứ nhất là: (492 - 4) : 2 = 244
5 số tự nhiên liên tiếp là: 244; 245; 246; 247; 248
bài 1:
\(C\left(x\right)=9x^2-6x-4\left|3x-1\right|+6\)
\(=9x^2-6x+1-4\left|3x-1\right|+5\)
\(=\left(\left|3x-1\right|\right)^2-4\left|3x-1\right|+4+1\)
\(=\left(\left|3x-1\right|-2\right)^2+1>=1\forall x\)
Dấu '=' xảy ra khi |3x-1|=2
=>\(\left[{}\begin{matrix}3x-1=2\\3x-1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
Bài 2:
\(A\left(x\right)=\left(2x+1\right)^2+\left(3x-2\right)^2+x-11\)
\(=4x^2+4x+1+9x^2-12x+4+x-11\)
\(=13x^2-7x-6\)
\(=13\left(x^2-\dfrac{7}{13}x-\dfrac{6}{13}\right)\)
\(=13\left(x^2-2\cdot x\cdot\dfrac{7}{26}+\dfrac{49}{676}-\dfrac{361}{676}\right)\)
\(=13\left(x-\dfrac{7}{26}\right)^2-\dfrac{361}{52}>=-\dfrac{361}{52}\forall x\)
Dấu '=' xảy ra khi \(x-\dfrac{7}{26}=0\)
=>\(x=\dfrac{7}{26}\)
a: Trên cùng một nửa mặt phẳng bờ chứa tia Ox, ta có: \(\widehat{xOt}< \widehat{xOy}\left(50^0< 100^0\right)\)
nên tia Ot nằm giữa hai tia Ox và Oy
=>\(\widehat{xOt}+\widehat{tOy}=\widehat{xOy}\)
=>\(\widehat{tOy}=100^0-50^0=50^0\)
b:
Vì tia Ot nằm giữa hai tia Ox và Oy
và \(\widehat{xOt}=\widehat{yOt}\left(=50^0\right)\)
nên Ot là phân giác của góc xOy