K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AQHP có \(\widehat{AQH}=\widehat{APH}=\widehat{PAQ}=90^0\)

nên AQHP là hình chữ nhật

b: ΔCQH vuông tại Q

mà QK là đường trung tuyến

nên KQ=KH=KC

Xét ΔKQH có KQ=KH

nên ΔKQH cân tại K

Ta có: AQHP là hình chữ nhật

=>AH cắt QP tại trung điểm của mỗi đường và AH=PQ

=>O là trung điểm chung của AH và QP

=>OA=OH=OQ=OP

Ta có: OQ=OH

=>O nằm trên đường trung trực của QH(1)

Ta có: KQ=KH

=>K nằm trên đường trung trực của QH(2)

Từ (1),(2) suy ra OK là đường trung trực của QH

c: Ta có: OK là đường trung trực của QH

=>OK\(\perp\)QH

mà AC\(\perp\)QH

nên OK//AC

=>ACKO là hình thang

Để ACKO là hình thang cân thì \(\widehat{KCA}=\widehat{OAC}\)

=>\(\widehat{HAC}=\widehat{HCA}\)

=>ΔHAC cân tại H

 mà ΔHAC vuông cân tại H

nên \(\widehat{ACH}=45^0\)

=>\(\widehat{ACB}=45^0\)

NV
7 tháng 8 2024

- Với n chẵn \(\Rightarrow n=2k\) với k nguyên

\(\Rightarrow n^2+2014=\left(2k\right)^2+2024=4k^2+2014=2\left(2k^2+1007\right)\) 

Do \(2k^2+1007\) luôn lẻ \(\Rightarrow\)\(2\left(2k^2+1007\right)\) là số chia hết cho 2 nhưng ko chia hết cho 4 nên ko thể là SCP

\(\Rightarrow n^2+2014\) ko thể là SCP

- Với n lẻ \(\Rightarrow n=2k+1\)

\(\Rightarrow n^2+2014=\left(2k+1\right)^2+2014=4k^2+4k+2015=4\left(k^2+k+503\right)+3\)

\(\Rightarrow n^2+2014\) chia 4 dư 3

Mà 1 số chính phương chia 4 chỉ có thể dư 0 hoặc 1

\(\Rightarrow n^2+2014\) ko thể là SCP

Vậy \(n^2+2014\) ko là SCP với mọi n nguyên dương

NV
7 tháng 8 2024

Đặt \(n^2+2n+8=k^2\) với k là số tự nhiên

\(\Rightarrow\left(n^2+2n+1\right)+7=k^2\)

\(\Rightarrow\left(n+1\right)^2+7=k^2\)

\(\Rightarrow k^2-\left(n+1\right)^2=7\)

\(\Rightarrow\left(k+n+1\right)\left(k-n-1\right)=7\)

Ta có bảng sau:

k+n+1-7-117
k-n-1-1-771
k-4-444
n-42-42

Vậy \(n=\left\{-4;2\right\}\)

Gọi tam giác vuông cần tìm là ΔABC vuông tại A, AM là đường trung tuyến.

Trên tia đối của tia MA, lấy D sao cho MA=MD

=>M là trung điểm của AD

Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

=>ABDC là hình bình hành

Hình bình hành ABDC có \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

=>AD=BC

mà AD=2AM

nên BC=2AM

=>\(AM=\dfrac{1}{2}BC\)(ĐPCM)

 

7 tháng 8 2024

Mình cần gấp!!!

7 tháng 8 2024

giúp với

mình cần phải nộp gấp

 

7 tháng 8 2024

Em cần làm gì với biểu thức này???

4
456
CTVHS
7 tháng 8 2024

\(\left(123+164\right).75+164.925+25.123\)

\(=123.75+164.75+164.925+25.123\)

\(=123.\left(75+25\right)+164.\left(75+925\right)\)

\(=123.100+164.1000\)

\(=12300+164000\)

\(=176300\)

\(16:\left\{400:\left[200-\left(37+46.3\right)\right]\right\}\)

\(=16:\left\{400:\left[200-\left(37+138\right)\right]\right\}\)

\(=16:\left\{400:\left[200-175\right]\right\}\)

\(=16:\left\{400:25\right\}\)

\(=16:16\)

\(=1\)

 

NV
7 tháng 8 2024

\(\left(123+164\right).75+164.925+25.123\)

\(=123.75+164.75+164.925+25.123\)

\(=\left(123.75+25.123\right)+\left(164.75+164.925\right)\)

\(=123.\left(75+25\right)+164.\left(75+925\right)\)

\(=123.100+164.1000\)

\(=12300+164000\)

\(=176300\)

=====================

\(16:\left\{400:\left[200-\left(37+46.3\right)\right]\right\}\)

\(=16:\left\{400:\left[200-175\right]\right\}\)

\(=16:\left\{400:25\right\}\)

\(=16:16\)

\(=1\)

NV
7 tháng 8 2024

Em kiểm tra lại đề, vế phải là \(\dfrac{x-1}{2023}+\dfrac{x}{2024}\) mới đúng

7 tháng 8 2024

Ta có:
\(\dfrac{a}{b}< \dfrac{c}{d}\\ \Rightarrow ad< bc\\ \Rightarrow\left\{{}\begin{matrix}ad+ab< bc+ab\\ad+cd< bc+cd\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}a\left(b+d\right)< b\left(a+c\right)\\d\left(a+c\right)< c\left(b+d\right)\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{a}{b}< \dfrac{a+c}{b+d}\\\dfrac{c}{d}>\dfrac{a+c}{b+d}\end{matrix}\right.\\ \Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
Vậy...

7 tháng 8 2024

Giải thích chi tiết một chút cho bạn dễ hiểu:
+)
 \(\dfrac{a}{b}< \dfrac{c}{d}\\ \Rightarrow\dfrac{a}{b}.bd< \dfrac{c}{d}.bd\\ \Rightarrow ad< bc\)

+) 
\(\left\{{}\begin{matrix}a\left(b+d\right)< b\left(a+c\right)\\d\left(a+c\right)< c\left(b+d\right)\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{a\left(b+d\right)}{b\left(b+d\right)}< \dfrac{b\left(a+c\right)}{b\left(b+d\right)}\\\dfrac{d\left(a+c\right)}{c\left(a+c\right)}< \dfrac{c\left(b+d\right)}{c\left(a+c\right)}\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{a}{b}< \dfrac{a+c}{b+d}\\\dfrac{d}{c}< \dfrac{b+d}{a+c}\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{a}{b}< \dfrac{a+c}{b+d}\\\dfrac{c}{d}>\dfrac{a+c}{b+d}\end{matrix}\right. \)