Chứng tỏ rằng phân số 14n+3/21n+4 là phân số tối giản.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2}{3}x-25\%=\dfrac{7}{4}\)
=>\(\dfrac{2}{3}x=\dfrac{7}{4}+\dfrac{1}{4}=\dfrac{8}{4}=2\)
=>\(x=2:\dfrac{2}{3}=3\)
2/3 . x - 25% = 7/4
2/3 . x - 1/4 = 7/4
2/3 . x = 7/4 + 1/4
2/3 . x = 2
x = 2 : 2/3
x = 3
Vậy x = 3.
2/3 của x là -150
=>\(x=-150:\dfrac{2}{3}=-150\cdot\dfrac{3}{2}=-225\)
a: ĐKXĐ: x<>-3
\(A=\dfrac{4-5x}{x+3}=\dfrac{-5x-15+19}{x+3}=--5+\dfrac{19}{x+3}\)
Để A là số nguyên mà x nhỏ nhất thì x+3=-19
=>x=-22
bài 1:
a: \(2n+3⋮n-1\)
=>\(2n-2+5⋮n-1\)
=>\(5⋮n-1\)
=>\(n-1\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{2;0;6;-4\right\}\)
b: \(n^2-2n+4⋮n+1\)
=>\(n^2+n-3n-3+7⋮n+1\)
=>\(7⋮n+1\)
=>\(n+1\in\left\{1;-1;7;-7\right\}\)
=>\(n\in\left\{0;-2;6;-8\right\}\)
c: \(2n^2+n+3⋮2n+1\)
=>\(n\left(2n+1\right)+3⋮2n+1\)
=>\(3⋮2n+1\)
=>\(2n+1\in\left\{1;-1;3;-3\right\}\)
=>\(n\in\left\{0;-1;1;-2\right\}\)
d: \(2n^2-n+2⋮n+2\)
=>\(2n^2+4n-5n-10+12⋮n+2\)
=>\(12⋮n+2\)
=>\(n+2\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)
=>\(n\in\left\{-1;-3;0;-4;1;-5;2;-6;4;-8;10;-14\right\}\)
a)(n2-3n+1)⋮(n-2)
Vì (n-2)⋮(n-2)
⇒n.(n-2)⋮(n-2)
⇒[(n2-3n+1)-n.(n-2)]⋮(n-2)
⇒[(n2-3n+1)-(n2-2n)]⋮(n-2)
⇒[n2-3n+1-n2+2n0 ]⋮(n-2)
⇒(-n+1):(n-2)
⇒-(n-1)⋮(n-2)
⇒(n-2+1)⋮(n-2)
Vì (n-2)⋮(n-2)
⇒1⋮(n-2)
Vì n nguyên
⇒(n-2)ϵƯ(1)={-1;1}Ư
1: \(\dfrac{15}{7}\cdot\dfrac{-3}{21}=\dfrac{15}{21}\cdot\dfrac{-3}{7}=\dfrac{-3}{7}\cdot\dfrac{5}{7}=-\dfrac{15}{49}\)
2: \(\dfrac{34}{-11}\cdot\left(\dfrac{1}{3}-\dfrac{5}{6}\right)^2+\dfrac{10}{11}\cdot\left(0,125\right)\)
\(=\dfrac{-34}{11}\left(\dfrac{2}{6}-\dfrac{5}{6}\right)^2+\dfrac{10}{11}\cdot\dfrac{1}{8}\)
\(=\dfrac{-34}{11}\cdot\dfrac{1}{4}+\dfrac{10}{88}\)
\(=\dfrac{-34}{44}+\dfrac{10}{88}=\dfrac{-34}{44}+\dfrac{5}{44}=\dfrac{-29}{44}\)
3: \(\left(\dfrac{3}{5}-\dfrac{1}{15}\right)\cdot\dfrac{-8}{7}-\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{4}\right)^2\)
\(=\left(\dfrac{9}{15}-\dfrac{1}{15}\right)\cdot\dfrac{-8}{7}-\dfrac{1}{3}\left(\dfrac{1}{4}\right)^2\)
\(=\dfrac{8}{15}\cdot\dfrac{-8}{7}-\dfrac{1}{3}\cdot\dfrac{1}{16}\)
\(=-\dfrac{64}{105}-\dfrac{1}{48}=-\dfrac{353}{560}\)
Gọi d=ƯCLN(14n+3;21n+4)
=>\(\left\{{}\begin{matrix}14n+3⋮d\\21n+4⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}42n+9⋮d\\42n+8⋮d\end{matrix}\right.\)
=>\(42n+9-42n-8⋮d\)
=>\(1⋮d\)
=>d=1
=>ƯCLN(14n+3;21n+4)=1
=>\(\dfrac{14n+3}{21n+4}\) là phân số tối giản