a)1+1/1.3+1/3.5+...+1/99.101
b)1/2+1/2.5+1/5.8+1/8.11+...+1/98.101
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{n}{n-5}=\dfrac{n-5+5}{n-5}=\dfrac{n-5}{n-5}+\dfrac{5}{n-5}=1+\dfrac{5}{n-5}\)
Để \(\dfrac{n}{n-5}\in Z\) thì \(\dfrac{5}{n-5}\in Z\)
\(\Rightarrow n-5\in\text{Ư}_{\left(5\right)}=\left\{-5;-1;1;5\right\}\)
\(\Rightarrow n\in\left\{0;4;6;10\right\}\)
Do \(n\in N\) nên tất cả các giá trị đều nhận
Vậy ...
\(S=\dfrac{2^2}{3x5}+\dfrac{2^2}{5x7}+\dfrac{2^2}{7x9}+...+\dfrac{2^2}{97x99}\)
\(\dfrac{S}{2}=\dfrac{2}{3x5}+\dfrac{2}{5x7}+\dfrac{2}{7x9}+...+\dfrac{2}{97x99}\)
\(\dfrac{S}{2}=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}...+\dfrac{1}{97}-\dfrac{1}{99}=\dfrac{1}{3}-\dfrac{1}{99}=\dfrac{32}{99}\)
S=\(\dfrac{64}{99}\)
Ta có : \(A\text{=}\dfrac{2023^{2023}}{2023^{2024}}\text{=}\dfrac{1}{2023}\)
và \(B\text{=}\dfrac{2023^{2022}}{2023^{2023}}\text{=}\dfrac{1}{2023}\)
\(\Rightarrow A\text{=}B\)
Ta có :
A=\(\dfrac{2023^{2023}}{2023^{2024}}\)=\(\dfrac{2023^{2022}.2023}{2023^{2023}.2023}\)=\(\dfrac{2023^{2022}}{2023^{2023}}\)
Mà B=\(\dfrac{2023^{2023}}{2023^{2024}}\)
Vậy A=B
a) đặt
\(S=1+\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{99\cdot101}\\ 2S=2+\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{99\cdot101}\\ 2S=2+\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\\ 2S=2+1-\dfrac{1}{101}\\ 2S=\dfrac{302}{101}\\ S=\dfrac{151}{101}\)
b)
đặt
\(S=\dfrac{1}{2}+\dfrac{1}{2\cdot5}+\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+...+\dfrac{1}{98\cdot101}\\ 3S=\dfrac{3}{2}+\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{98\cdot101}\\ 3S=\dfrac{3}{2}+\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{98}-\dfrac{1}{101}\\ 3S=\dfrac{3}{2}+\dfrac{1}{2}-\dfrac{1}{101}\\ 3S=\dfrac{201}{101}\\ S=\dfrac{67}{101}\)
\(2A-1=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
\(2A-1=1-\dfrac{1}{101}=\dfrac{100}{101}\)
\(2A=\dfrac{201}{101}\Rightarrow A=\dfrac{201}{202}\)