chứng minh 2n + 1 và n + 1 là 2 số nguyên tố cùng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ước chung lớn nhất của n + 1 và 3n + 4 là d
Ta có: \(\left\{{}\begin{matrix}n+1⋮d\\3n+4⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}3.\left(n+1\right)⋮d\\3n+4⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}3n+3⋮d\\3n+4⋮d\end{matrix}\right.\)
⇒ 3n + 4 - (3n+ 3) ⋮ d ⇒ 3n + 4 - 3n - 3 ⋮ d ⇒1 ⋮ d ⇔ d = 1
Vậy n + 1 và 3n + 4 là hai số nguyên tố cùng nhau (đpcm)
Gọi d = ƯCLN(n + 1; 3n + 4)
⇒ (n + 1) ⋮ d và (3n + 3) ⋮ d
*) (n + 1) ⋮ d
⇒ 3(n+ 1) ⋮ d
⇒ (3n + 3) ⋮ d
Mà (3n + 4) ⋮ d (cmt)
⇒ (3n + 4 - 3n - 3) ⋮ d
⇒ 1 ⋮ d
⇒ d = 1
Vậy n + 1 và 3n + 4 là hai số nguyên tố cùng nhau
Gọi ước chung lớn nhất của 11a + 2b và 18a + 5b là d ta có:
\(\left\{{}\begin{matrix}11a+2b⋮d\\18a+5b⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}\left(11a+2b\right).5⋮d\\\left(18a+5b\right).2⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}55a+10b⋮d\\36a+10b⋮d\end{matrix}\right.\)
⇒ 55a + 10b - (36a + 10b) ⋮ d ⇒ 55a + 10b - 36a - 10b ⋮ d ⇒19a⋮d (1)
\(\left\{{}\begin{matrix}11a+2b⋮d\\18a+5b⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}\left(11a+2b\right).18⋮d\\\left(18a+5b\right).11⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}198a+36b⋮d\\198a+55b⋮d\end{matrix}\right.\)
⇒198a + 55b -(198a + 36b) ⋮ d⇒198a + 55b -198a -36b ⋮d⇒ 19b⋮d(2)
Kết hợp(1) và (2) ta có: d là ước chung của 19a và 19b
19a = 19.a; 19b = 19.b và (a;b) = 1⇒ ƯCLN(19a; 19b) = 19
⇒ d = 19 ⇒ ƯC(11a + 2b; 18a + 5b) = {1; 19) (đpcm)
Lời giải:
Gọi $d=ƯCLN(11a+2b, 18a+5b)$
$\Rightarrow 11a+2b\vdots d; 18a+5b\vdots d$
$\Rightarrow 5(11a+2b)-2(18a+5b)\vdots d$
$\Rightarrow 19\vdots d$
$\Rightarrow d=1$ hoặc $d=19$
Vậy ta có đpcm.
Gọi d = ƯCLN(2n + 3; 3n + 4)
⇒ (2n + 3) ⋮ d và (3n + 4) ⋮ d
*) (2n + 3) ⋮ d
⇒ 3(2n + 3) ⋮ d
⇒ (6n + 9) ⋮ d (1)
*) (3n + 4) ⋮ d
⇒ 2(3n + 4) ⋮ d
⇒ (6n + 8) ⋮ d (2)
Từ (1) và (2) suy ra:
(6n + 9 - 6n - 8) ⋮ d
⇒ 1 ⋮ d
⇒ d = 1
Vậy ƯCLN(2n + 3; 3n + 4) = 1
tính từ năm 40 (khởi nghĩa 2 bà trưng)cho tới thời điểm hiện tại (năm 2022)là:1982 năm.198 thập kỉ,19 thế kỉ
tính từ năm 40 (khởi nghĩa 2 bà trưng)cho tới thời điểm hiện tại (năm 2022)là:1982 năm.198 thập kỉ,19 thế kỉ
B(6)={0;6;12;18;24;30;36;42}
B(9)={0;9;18;27;36}
B(12)={0;12;24;36}
BC(6;9;12)={36}
Vậy số học sinh trong lớp là 36 bạn .
TICK ĐÊ BẠN ƠI !!!
`#3107.101107`
\(B=4+4^2+4^3+...+4^{89}+4^{90}\)
\(=\left(4+4^2+4^3\right)+...+\left(4^{88}+4^{89}+4^{90}\right)\)
\(=4\left(1+4+4^2\right)+...+4^{88}\left(1+4+4^2\right)\)
\(=\left(1+4+4^2\right)\left(4+...+4^{88}\right)\)
\(=21\left(4+4^{88}\right)\)
Vì \(21\left(4+4^{88}\right)\) `\vdots 21`
`\Rightarrow B \vdots 21`
Vậy, `B \vdots 21.`
Gọi ước chung lớn nhất của 2n + 1 và n + 1 là d ta có:
\(\left\{{}\begin{matrix}2n+1⋮d\\n+1⋮d\end{matrix}\right.\) ⇒\(\left\{{}\begin{matrix}2n+1⋮d\\\left(n+1\right).2⋮d\end{matrix}\right.\)⇒ \(\left\{{}\begin{matrix}2n+1⋮d\\2n+2⋮d\end{matrix}\right.\) ⇒ 2n +2 - 2n - 1 ⋮ d
⇒ 1 ⋮ d ⇒ d = 1
Vậy 2n + 1 và n + 1 là hai số nguyên tố cùng nhau (đpcm)
Gọi d = ƯCLN(2n + 1; n + 1)
⇒ (2n + 1) ⋮ d và (n + 1) ⋮ d
*) (n + 1) ⋮ d
⇒ 2(n + 1) ⋮ d
⇒ (2n + 2) ⋮ d
Mà (2n + 1) ⋮ d (cmt)
⇒ (2n + 2 - 2n - 1) ⋮ d
⇒ 1 ⋮ d
⇒ d = 1
Vậy 2n + 1 và n + 1 là hai số nguyên tố cùng nhau