Chương trình khuyến mại lớn nhất năm: Lì xì đầu xuân - Nhân đôi gói VIP, xem ngay!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho 3 số thực dương thỏa mãn \(a+b+c=3\).Chứng minh:
\(\frac{1}{a^2+b^2+2}+\frac{1}{b^2+c^2+2}+\frac{1}{c^2+a^2+2}\le\frac{3}{4}\)
Dựa vào quy luật của các số trong hình A và B , hãy điền số thích hợp vào chỗ chấm trong hình C
BĐT \(\Leftrightarrow\frac{a^2+b^2}{a^2+b^2+2}+\frac{b^2+c^2}{b^2+c^2+2}+\frac{c^2+a^2}{c^2+a^2+2}\ge\frac{3}{2}\)
Rồi tự giải nốt đi:) Ko thì để t lục lại bài hồi sáng t giải ngoài giấy:v (tại vì hồi sáng giải ngon lành bằng bunyakovski mà giờ làm ko ra:((
Cho tam giác ABC vuông tại A, đường cao AH. Gọi I, J, K lần lượt là tâm đường tròn nội tiếp của tam giác ABC, tam giác AHB, tam giác AHC. Chứng minh AI vuông góc JK.
Cho tam giác ABC vuông tại A. Từ trung điểm E của cạnh AC kẻ EF vuông góc với BC tại F.
a) Cho BC = 20cm, sinC = 0,6. Giải tam giác ABC;
b) Chứng minh rằng: AC2 = 2CF.CB
c) Chứng minh: AF = BE.cosC
Tình cờ kiếm trên AoPS được bài này hơi hay đấy!:)) Ý tưởng của họ tuyệt vời quá, em chả hiểu nổi làm sao có đc ý tưởng như vậy:V Để xem mọi người có ý tưởng thế nào:))
Cho a, b là các số dương thỏa mãn \(ab\ge\frac{3}{2}\)
Chứng minh rằng: \(3\left(2a+b-3\right)\left(2b+a-3\right)\ge\left(a-b\right)^2+\frac{21}{20}\)
Tìm x,y nguyên dương thỏa mãn:
\(2019\left(x-y\sqrt{2014}\right)-2018\left(y-z\sqrt{2014}\right)\)
và \(x^2+y^2+z^2\)
là số nguyên tố
Giải hệ\(\hept{\begin{cases}\sqrt{x}+\sqrt{1+\frac{1}{y}}=\sqrt{\frac{x}{y}}\\\sqrt{xy}+\sqrt{y+1}+\sqrt{1-x}=1\end{cases}}\)
Giải hệ \(\hept{\begin{cases}\sqrt{x}+\sqrt{1+\frac{1}{y}}=\sqrt{\frac{x}{y}}\\\sqrt{xy}+\sqrt{y+1}+\sqrt{1-x}=1\end{cases}}\)
Cho tam giác ABC nhọn có góc A bằng 60 độ . CMR:BC^2=AB^2 AC^2−AB.AC
Cho tam giác ABC nhọn biết góc A = 60 độ . Chứng minh rằng BC^2 = AB^2 +AC^2 - AB.AC
Dựa vào quy luật của các số trong hình A và B , hãy điền số thích hợp vào chỗ chấm trong hình C
BĐT \(\Leftrightarrow\frac{a^2+b^2}{a^2+b^2+2}+\frac{b^2+c^2}{b^2+c^2+2}+\frac{c^2+a^2}{c^2+a^2+2}\ge\frac{3}{2}\)
Rồi tự giải nốt đi:) Ko thì để t lục lại bài hồi sáng t giải ngoài giấy:v (tại vì hồi sáng giải ngon lành bằng bunyakovski mà giờ làm ko ra:((