Cho tam giác $ABC$ vuông ở $A$ có $AB = 8$, $AC = 15$. Vẽ đường cao $AH$. Gọi $D$ là điểm đối xứng với $B$ qua $H$. Vẽ đường tròn đường kính $CD$, cắt $AC$ ở $E$.
a) Chứng minh rằng $HE$ là tiếp tuyến của đường tròn.
b) Tính độ dài $HE$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1..Mọi người đến thăm các trung tâm chữa bệnh bằng thiên nhiên và các bệnh viện cung cấp dịch vụ điều trị chuyên khoa.
2.Đây là một trào lưu trong giới trẻ. Họ thực hiện rất nhiều hoạt động tích cực như trekking, leo núi, chèo bè trên sông, đốt lửa trại, v.v.
3.Nó có thể là một loại hình du lịch sinh thái và thân thiện với động vật. Nó có nghĩa là xem động vật hoang dã trong môi trường sống tự nhiên của chúng.
4.Mọi người đi du lịch để tham dự các nhiệm vụ tôn giáo và thăm những nơi có tầm quan trọng của tôn giáo.
5.Mọi người đi du lịch đến các địa điểm lịch sử, chẳng hạn như địa điểm di sản, đền thờ, nhà thờ, bảo tàng, pháo đài, v.v. để biết cách cha ông chúng ta sống và quản lý ở một khu vực cụ thể.
6.Mọi người đi du lịch đến một số cộng đồng để khám phá cách người dân địa phương ở lại, tồn tại và thịnh vượng.
7.Mọi người đi du lịch đến những nơi xa xôi để hít thở không khí không ô nhiễm.
8.Mọi người đi đến những nơi xa để tìm kiếm các tuyến đường của họ và tham gia vào các nghĩa vụ gia đình. Những người định cư ở nước ngoài trong thời gian sau này về thăm nơi sinh của họ để thúc đẩy du lịch dân tộc.
9.Mọi người đi tham quan với mục đích giải trí. Họ đi du lịch để thay đổi và nghỉ ngơi
a) Ta thấy tam giác AEH và ADH đều là các tam giác vuông chung cạnh huyền AH nên AEHD nội tiếp đường tròn đường kính AH.
b) Gọi O là trung điểm của AH và K là giao điểm của AH với BC. Do H là trực tâm nên ta có ngay AK là đường cao của tam giác ABC.
Theo tính chất đường trung tuyến ứng với cạnh huyền của tam giác vuông ta có:
^OEH=^OHE=^KHC; ^MEC=^MCE.
mà ^KHC+^MCE=90o.
Suy ra: ^OEH+^MEC=90o nên OE⊥EM hay ME tiếp xúc với đường tròn ngoại tiếp tứ giác AEHD.
a) Kẻ OP ⊥ AM, OQ ⊥ BN
Ta có: AM = BN (Giả thiết)
Suy ra: OP = OQ (hai dây bằng nhau cách đều tâm)
Xét hai tam giác OCP và OCQ, ta có:
Góc OPC= góc OQC=90∘
OC chung
OP = OQ (chứng minh trên)
Suy ra: ∆OCP = ∆OCQ (cạnh huyền, cạnh góc vuông)
Góc O1= góc O2
Xét hai tam giác OAP và OBQ, ta có:
Góc OPA= góc OQB=90∘
OA = OB
OP = OQ ( chứng minh trên)
Suy ra: ∆OAP = ∆OBQ (cạnh huyền, cạnh góc vuông)
Góc O3= Góc O4
Suy ra: Góc O1+góc O3= Góc O2+ góc O4 hay Góc AOC= Góc BOC
Vậy OC là tia phân giác của Góc AOB
b) Tam giác OAB cân tại O có OC là tia phân giác nên OC đồng thời cũng là đường cao ( tính chất tam giác cân).
Suy ra: OC ⊥ AB.
Ta có : \(\Delta=\left[-2\left(m+1\right)\right]^2-4\left(m^2+3\right)=\left(-2m-2\right)^2-4\left(m^2+3\right)\)
\(=\left(2m+2\right)^2-4\left(m^2+3\right)=4m^2+8m+4-4m^2-12=8m-8\)
Để phương trình có nghiệm \(8m-8>0\Leftrightarrow m< 1\)
\(8m-8=0\Leftrightarrow m=1\)
Theo Vi et ta có \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=\frac{2m+2}{1}=2m+2\\x_1x_1=\frac{c}{a}=m^2+3\end{cases}}\)
\(P=2m+2+m^2+3=m^2+2m+5\)
\(=m^2+2m+1+4=\left(m+1\right)^2+4\ge4\)
Dấu ''='' xảy ra <=> m = -1
Vậy GTNN P là 4 <=> m =-1
Để phương trình 1 có nghiệm \(=>\Delta\ge0\)
\(\Delta=4.\left(m+1\right)^2-4.\left(m^2+3\right)=4m^2+8m+4-4m^2-12=8m-8\ge0=>m\ge1\)
Cho phương trình x2 + ( m - 3 )x - 2m - 1 = 0 (1)
a) Với m = 1, thay vào (1) ta được pt : x2 - 2x - 3 = 0
Dễ thấy pt trên có a - b + c = 1 + 2 - 3 = 0
nên pt có hai nghiệm x1 = -1 ; x2 = -c/a = 3
Vậy với m = 1 thì pt có hai nghiệm x1 = -1 ; x2 = 3
b) Xét Δ ta có :
Δ = b2 - 4ac = ( m - 3 )2 - 4( -2m - 1 )
= m2 - 6m + 9 + 8m + 4
= m2 + 2m + 13
Dễ thấy Δ = m2 + 2m + 13 = ( m + 1 )2 + 12 ≥ 12 > 0 ∀ m
hay (1) luôn có hai nghiệm với mọi m (đpcm)
c) lỗi quá e k nhìn rõ đề
a, Thay m = 1 vào phương trình ta được :
\(x^2-2x-3=0\Leftrightarrow x^2-2x+1-4=0\)
\(\Leftrightarrow\left(x-1\right)^2-4=0\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)
Vậy với m = 1 thì x = -1 ; x = 3
b, \(x^2+\left(m-3\right)x-2m-1=0\Leftrightarrow x^2+\left(m-3\right)x-\left(2m+1\right)=0\)
\(\Delta=\left(m-3\right)^2+4\left(2m+1\right)=m^2-6m+9+8m+4\)
\(=m^2+2m+13=m^2+2m+\frac{1}{4}+\frac{51}{4}\)
\(=\left(m+\frac{1}{2}\right)^2+\frac{51}{4}>0\forall m\)
Vậy phương trình (1) luôn có 2 nghiệm phân biệt với mọi giá trị m
Theo Viet \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-1\\x_1x_2=\frac{c}{a}=-7\end{cases}}\)
Ta có : \(C=x_1\left(x_2+1\right)+x_2\left(x_1+1\right)\)
\(=x_1x_2+x_1+x_1x_2+x_2=2x_1x_2+x_1+x_2\)
\(\Rightarrow C=-14-1=-15\)
んuリ イ không giải phương trình
Theo hệ thức Vietè ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}\\x_1x_2=\frac{c}{a}\end{cases}}\)
Khi đó : \(C=x_1\left(x_2+1\right)+x_2\left(x_1+1\right)=x_1x_2+x_1+x_1x_2+x_2\)
\(=2x_1x_2+\left(x_1+x_2\right)=\frac{2c}{a}-\frac{b}{a}=\frac{2c-b}{a}=\frac{-14-1}{1}=-15\)
Vậy ...
a) Thay m = -12 vào phương trình ta có
x2 + 5x – 14 = 0
<=> x2 + 7x - 2x - 14 = 0
<=> (x2 + 7x ) - (2x + 14) = 0
<=> x(x + 7) - 2(x + 7) = 0
<=> (x - 2)( x + 7) = 0
<=> x - 2 = 0 hoặc x + 7 = 0
<=> x = 2 hoặc x = -7
Vậy tập nghiệm của phương trình là S={-7 ; 2 }
Em chỉ iết làm câu này câu sau em xin lỗi!
a, Thay m =-12 vào phương trình trên ta được :
\(PT\Leftrightarrow x^2+5x-14=0\)
Ta có : \(\Delta=25-4\left(-14\right)=25+56=81>0\)
Vậy ta có 2 nghiệm phân biệt
\(x_1=\frac{-5-9}{2}=-7;x_2=\frac{-5+9}{2}=2\)
Vậy với m = -12 thì x = -7 ; 2
b, Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=\frac{-5}{2}\\x_1x_2=\frac{c}{a}=\frac{m-2}{2}\end{cases}}\)
Ta có : \(\frac{1}{x_1-1}+\frac{1}{x_2-1}=2\)ĐK : \(x_1\ne1;x_2\ne1\)
Gọi \(x_1=a;x_2=b\)( em đặt cho dễ viết thôi nhé )
\(\frac{1}{a-1}+\frac{1}{b-1}=2\)
\(\Leftrightarrow\frac{b-1+a-1}{\left(a-1\right)\left(b-1\right)}=\frac{2\left(a-1\right)\left(b-1\right)}{\left(a-1\right)\left(b-1\right)}\)
\(\Rightarrow a+b-2=2\left(ab-a-b+1\right)\)
\(\Leftrightarrow a+b-2=2\left[ab-\left(a+b\right)+1\right]\)
hay \(-\frac{5}{2}-2=2\left(\frac{m-2}{2}+\frac{5}{2}+1\right)\)
\(\Leftrightarrow\frac{-9}{2}=2\left(\frac{m+5}{2}\right)\Leftrightarrow\frac{-9}{2}=\frac{2m+10}{2}\)
\(\Rightarrow2m+10=-9\Leftrightarrow m=-\frac{19}{2}\)
a) Gọi O là trung điểm của CD.
Do E nằm trên đường tròn (O) nên ^DEC=90o hay DE⊥AC.
Thế thì DE//AB.
Gọi M là trung điểm AE, xét hình thang ABDE có: H là trung điểm BD và M là trung điểm AE nên HM là đường trung bình của hình thang.
Vậy nên HM//AB//DE hay HM⊥AE.
Suy ra tam giác HAE cân tại H hay ^HEA=^HAE.
Tam giác OEC cân tại O nên ^OEC=^OCE.
Từ đó ta có: ^HEA+^OEC=^HAE+^OCE=90o.
Suy ra ^OEH=180o−90o=90o.
Vậy nên HEHE là tiếp tuyến của đường tròn (O).
b) Xét tam giác ABC vuông tại A, áp dụng định lý Pi-ta-go, ta có:
BC=√AB2+AC2=17(cm)
Do tam giác HAE cân tại H nên:
HE = AH = (AB*AC)/BC=120/17
a) Gọi O là trung điểm của CD.
Do E nằm trên đường tròn (O) nên \widehat{DEC}=90^oDEC=90o hay DE\perp ACDE⊥AC.
Thế thì DE//AB.
Gọi M là trung điểm AE, xét hình thang ABDE có: H là trung điểm BD và M là trung điểm AE nên HM là đường trung bình của hình thang.
Vậy nên HM//AB//DE hay HM\perp AE.HM⊥AE.
Suy ra tam giác HAE cân tại H hay \widehat{HEA}=\widehat{HAE}HEA=HAE.
Tam giác OEC cân tại O nên \widehat{OEC}=\widehat{OCE}OEC=OCE.
Từ đó ta có: \widehat{HEA}+\widehat{OEC}=\widehat{HAE}+\widehat{OCE}=90^o.HEA+OEC=HAE+OCE=90o.
Suy ra \widehat{OEH}=180^o-90^o=90^o.OEH=180o−90o=90o.
Vậy nên HEHE là tiếp tuyến của đường tròn (O).
b) Xét tam giác ABC vuông tại A, áp dụng định lý Pi-ta-go, ta có:
BC=\sqrt{AB^2+AC^2}=17\left(cm\right)BC=AB2+AC2=17(cm)
Do tam giác HAE cân tại H nên:
HE = AH = \dfrac{AB.AC}{BC}=\dfrac{120}{17}.BCAB.AC=17120.