K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(2x\left(x-1\right)-2x^2+x-5=0\)

\(\Leftrightarrow2x^2-2x-2x^2+x-5=0\)

\(\Leftrightarrow-x-5=0\Leftrightarrow x=-5\)

18 tháng 7 2020

Trả lời:

\(2x.\left(x-1\right)-2x^2+x-5=0\)

\(2x^2-2x-2x^2+x-5=0\)

\(-x-5=0\)

\(-x=5\)

\(x=-5\)

Vậy \(x=-5\)

18 tháng 7 2020

thiếu đề nhé bạn 

18 tháng 7 2020

à x+y<=1

Em chỉ biết cộng trừ sương sương nên ko chắc lắm :) 

\(\hept{\begin{cases}2x^2-5xy+2y^2-x+2y=0\\x^2+3xy+x=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x^2-2xy+2y^2+2y=0\\x^2+3xy+x=0\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}9x^2-6xy+6y^2+2y=0\\2x^2+6xy+x=0\end{cases}\Leftrightarrow\hept{\begin{cases}11x^2+6y^2+2y=0\\2x^2+6xy+x=0\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}22x^2+12y^2+4y=0\\22x^2+66xy+11x=0\end{cases}\Leftrightarrow\hept{\begin{cases}12y^2+4y=0\\66xy+11x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}12y^2=-4y\\-66xy-11x=0\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}y=0;\frac{1}{3}\left(1\right)\\-66xy-11x=0\left(2\right)\end{cases}}\) TH1 : Thay y = 0 vào 2 ta đc :

\(-66x.0-11x=0\Leftrightarrow-11x=0\Leftrightarrow x=0\)

TH2 : Thay y = 1/3 vào 2 ta đc : 

\(-66x.\frac{1}{3}-11x=0\Leftrightarrow\frac{-66x}{3}-\frac{33x}{3}=0\) Khử mẫu ta đc :

\(-66x-33=0\Leftrightarrow x=-\frac{1}{2}\)

11 tháng 7 2020

cuc cuc ai bi con cac

18 tháng 7 2020

sorry em lp 6 nen ko hieu

11 tháng 7 2020

Đặt AH=h

Xong c vô trang này là đc

https://h.vn/hoi-dap/question/92121.html

Sửa Bài 3 nhé ! Lỗi kĩ thuật đánh máy )):

\(x^2-2mx-6=0\)

Phần b đằng sau .... Đạt GTNN  nhé, đánh máy lỗi quá.

2 tháng 7 2020

Cảm ơn bạn nhớ :3

\(a.\left(a+2b\right)^3-b.\left(2a+b\right)^3\)

\(=a.\left(a+20+b\right)^3-b.\left(20+a+b\right)^3\)

\(=\left(a-b\right).\left(a+20+b\right)^3\)

Thế này có phải là phân tích đa thức thành nhân tử k ạ

Chúc bạn học tốt

1 tháng 7 2020

\(a\left(a+2b\right)^3-b\left(2a+b\right)^3\)

\(=\left(a^4+6a^3b+12a^2b^2+8ab^3\right)-\left(b^4+8a^3b+12a^2b^2+6ab^3\right)\)

\(=a^4-b^4-2a^3b+2ab^3\)

\(=\left(a^2-b^2\right)\left(a^2+b^2\right)-2ab\left(a^2-b^2\right)\)

\(=\left(a^2-b^2\right)\left(a^2-2ab+b^2\right)\)

\(=\left(a-b\right)^3\left(a+b\right)\)

OK ?