cho góc nhọn xOy và tia phân giác Oz của góc đó .Trên tia Ox lấy điểm a ,trên tia Oy lấy điểm b sao cho oa=ob . trên tia Oz lấy điểm I bất kì chứng minh a) tam giác AOI = tam giác BOI
B) AB VUÔNG GÓC OI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H M I
a/ Xét tg vuông BAC và tg vuông HAB có
\(\widehat{ACB}=\widehat{ABH}\) (cùng phụ với \(\widehat{BAC}\) )
b/
\(BC=\sqrt{AC^2-AB^2}\) (Pitago)
\(\Rightarrow BC=\sqrt{25^2-15^2}=20cm\)
\(\dfrac{MA}{AB}=\dfrac{MC}{BC}\) (T/c đường phân giác)
\(\Rightarrow\dfrac{MA}{15}=\dfrac{MC}{25}\Rightarrow\dfrac{MA}{MC}=\dfrac{15}{25}=\dfrac{3}{5}\)
\(\Rightarrow MC=\dfrac{AC}{3+5}x5=\dfrac{25}{8}x5=15,625cm\)
c/
\(AB^2=AH.AC\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
\(\Rightarrow AH=\dfrac{AB^2}{AC}\)
AM=AC-MC
HM=AM-AH
\(BH^2=AH.HC\)(trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích giữa 2 hình chiếu của 2 cạnh góc vuông trên cạnh huyền)
Xét tg vuông BHM
\(BM=\sqrt{BH^2+HM^2}\)
Ta có
\(AB\perp BC;MI\perp BC\) => MI//AB
\(\Rightarrow\dfrac{BI}{AM}=\dfrac{CI}{MC}\Rightarrow\dfrac{BI}{CI}=\dfrac{AM}{MC}\) (talet trong tg)
Từ đó tính được CI
Bạn tự thay số và tính toán
\(a.\) Xét \(\Delta BAC\) và \(\Delta HAB\) \(\left(\widehat{B}=\widehat{H}=90^o\right)\), ta có:
\(\widehat{A}\) là góc chung
\(\Rightarrow\Delta BAC\sim\Delta HAB\) \(\left(g-g\right)\)
\(b.\) Xét \(\Delta ABC\) vuông tại \(\widehat{B}\), ta có:
\(AC^2=AB^2+BC^2\) \(\left(Pytago\right)\)
\(\Rightarrow BC^2=AC^2-AB^2=25^2-15^2=625-225=400\)
\(\Rightarrow BC=\sqrt{400}=20\) \(\left(cm\right)\)
Do \(BM\) là đường phân giác của \(\Delta ABC\)
\(\Rightarrow\dfrac{AB}{AM}=\dfrac{BC}{MC}\) \(\Rightarrow\dfrac{AB}{AC-MC}=\dfrac{BC}{MC}\)
\(\Rightarrow AB\cdot MC=BC\cdot\left(AC-MC\right)\)
\(\Leftrightarrow AB\cdot MC=AC\cdot BC-BC\cdot MC\)
\(\Leftrightarrow AB\cdot MC+BC\cdot MC=AC\cdot BC\)
\(\Leftrightarrow MC\left(AB+BC\right)=AC\cdot BC\)
\(\Leftrightarrow MC=\dfrac{AC\cdot BC}{AB+BC}=\dfrac{25\cdot20}{15+20}=\dfrac{500}{35}=\dfrac{100}{7}\approx14,29\) \(\left(cm\right)\)
\(E=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)\)
Đặt \(t=x^2+5x+5\) ta được
\(E=\left(x-1\right)\left(x+1\right)\)
\(=x^2-1\)
\(x^2\ge0\) \(\Rightarrow x^2-1\ge-1\)
Dấu "\(=\)" xảy ra khi \(x=0\)
Vậy giá trị nhỏ nhất của \(E\) là \(-1\)
Em đặt t thì p là t chứ sao lại đặt t xuống dưới là x được.
\(\dfrac{1}{x+2}-\dfrac{2x-9}{x^3-8}=\dfrac{2}{x^2-2x+4}\left(x\ne2\right)\)
\(\Leftrightarrow\dfrac{x^2-2x+4}{x^3-8}-\dfrac{2x-9}{x^3-8}=\dfrac{2\left(x+2\right)}{x^3-8}\) \(\left(MSC=x^3-8=\left(x+2\right)\left(x^2-2x+4\right)\right)\)
\(\Leftrightarrow x^2-2x+4-\left(2x-9\right)=2\left(x+2\right)\)
\(\Leftrightarrow x^2-2x+4-2x+9=2x+4\)
\(\Leftrightarrow x^2-6x+9=0\)
\(\Leftrightarrow\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Bạn viết rõ đề hơn được không bạn . Chỗ B D = 180 ấy ạ .
Hình bạn tự vẽ nha .
a) Tứ giác ABCD là hình bình hành
Suy ra : AB=CD (1)
Mà : M là trung điểm của AB ; N là trung điểm của DC
Suy ra : AM=MB và DN=CN (2)
Từ (1) và (2) suy ra : AM=MB=CN=DN
Suy ra : AM=CN(đpcm)
b) Ta có : MB = DN
Mà MB song song với DN ( AB song song với DC)
Suy ra : Tứ giác MBDN là hình bình hành .
Suy ra : MD=BN (đpcm)
c) Từ b) suy ra : MBDN là hbh
Suy ra : DM song song với BM (đpcm)
Ta có hình vẽ:
a) Vì Oz là phân giác của xOy nên xOz=yOz=xOy2���=���=���2
Xét Δ AOI và Δ BOI có:
OA = OB (gt)
AOI = BOI (cmt)
OI là cạnh chung
Do đó, Δ AOI = Δ BOI (c.g.c) (đpcm)
b) Xét Δ AOH và Δ BOH có:
OA = OB (gt)
AOH = BOH (câu a)
OH là cạnh chung
Do đó, Δ AOH = Δ BOH (c.g.c)
=> AHO = BHO (2 góc tương ứng)
Mà AHO + BHO = 180o (kề bù) nên AHO = BHO = 90o
=> AB⊥OI(đpcm))