Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt AC ở D. Trên tia
BC lấy điểm E sao cho BE = AB.
a) Chứng minh góc BDE vuông
b) Chứng minh BD là trung trực của AE.
c) Trên tia đối của tia AB lấy điểm K sao cho AK = EC. Chứng minh 3 điểm E,
D, K thẳng hàng.
d) Chứng minh AE // KC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
1. isn't she 2. isn't he? 3. aren't we? 4. am I? 5. don't you? 6. isn't it? 7. shall we? 8. are they? 9. will we? 10. isn't he?
11. didn't they? 12. does she? 13. won't they? 14. don't we? 15. mustn't we? 16. do they? 17. don't I? 18. aren't I? 19. does she?
20. didn't you?
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
a. Xét tam giác $ABH$ và $ACH$ có:
$AB=AC$ (do $ABC$ là tg cân)
$AH$ chung
$\widehat{AHB}=\widehat{AHC}=90^0$
$\Rightarrow \triangle AHB=\triangle AHC$ (ch-cgv)
$\Rightarrow HB=HC$.
b. Xét tam giác $AHD$ và $AHE$ có:
$AH$ chung
$\widehat{A_1}=\widehat{A_2}$ (do 2 tam giác bằng nhau phần a)
$\widehat{ADH}=\widehat{AEH}=90^0$
$\Rightarrow \triangle AHD=\triangle AHE$ (ch-gn)
$\Rightarrow \widehat{AHD}=\widehat{AHE}$
$\Rightarrow HA$ là tia phân giác góc $\widehat{DHE}$
c.
Từ tam giác bằng nhau phần b thì suy ra $AD=AE$
$\Rightarrow ADE$ là tam giác cân tại $A$
$\Rightarrow \widehat{AED}=\frac{1}{2}(180^0-\widehat{A})(1)$
Tam giác $ABC$ cân tại $A$
$\Rightarrow \widehat{ACB}=\frac{1}{2}(180^0-\widehat{A})(2)$
Từ $(1); (2)\Rightarrow \widehat{AED}=\widehat{ACB}$
Hai góc này ở vị trí đồng vị nên $DE\parallel BC$
![](https://rs.olm.vn/images/avt/0.png?1311)
1 , Đề bài thiếu
2 , \(\Delta ABC\)cân tại A = > \(\widehat{B}=\frac{180^0-\widehat{A}}{2}=\frac{180^0-80^0}{2}=\frac{100^0}{2}=50^0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
chứng minh rằng nếu mỗi giá trị của dấu hiệu giảm đi 3 lần thì số trung bình cộng cũng giảm đi 3 lần:thiếu đề viết thêm để bổ sung!
![](https://rs.olm.vn/images/avt/0.png?1311)
a. PTBĐ: miêu tả
b+c. TN: Trên những bãi đất phù sa mịn hồng mơn mởn
=> TN chỉ nơi chốn
TN: Những buổi chiều nắng ấm
=> TN chỉ thời gian
d. ND chính của đoạn trích: miêu tả cảnh mùa xuân bên bờ sông Lương.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\dfrac{x+1}{51}-1+\dfrac{x-1}{49}-1=\dfrac{13-x}{37}+1+\dfrac{x-5}{15}-3\)
\(\Leftrightarrow\dfrac{x-50}{51}+\dfrac{x-50}{49}=\dfrac{50-x}{37}+\dfrac{x-50}{15}\)
\(\Leftrightarrow\left(x-50\right)\left(\dfrac{1}{51}+\dfrac{1}{49}+\dfrac{1}{37}-\dfrac{1}{15}\ne0\right)=0\Leftrightarrow x=50\)
a) Xét ΔABD và ΔEBD có
BA=BE(gt)
ˆABD=ˆEBDABD^=EBD^(BD là tia phân giác của ˆABEABE^)
BD chung
Do đó: ΔABD=ΔEBD(c-g-c)
b) Ta có: ΔABD=ΔEBD(cmt)
nên ˆBAD=ˆBEDBAD^=BED^(hai góc tương ứng)
mà ˆBAD=900BAD^=900(gt)
nên ˆBED=900BED^=900
Xét ΔADM vuông tại A và ΔEDC vuông tại E có
DA=DE(ΔABD=ΔEBD)
ˆADM=ˆEDCADM^=EDC^(hai góc đối đỉnh)
Do đó: ΔADM=ΔEDC(Cạnh góc vuông-góc nhọn kề)
Suy ra: AM=EC(Hai cạnh tương ứng)
c) Xét ΔBAE có BA=BE(gt)
nên ΔBAE cân tại B(Định nghĩa tam giác cân)
Suy ra: ˆBAE=ˆBEABAE^=BEA^(hai góc ở đáy)
mà ˆBAE+ˆMAE=1800BAE^+MAE^=1800(hai góc kề bù)
và ˆBEA+ˆAEC=1800BEA^+AEC^=1800(hai góc kề bù)
nên ˆAEC=ˆEAM
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm