Cho hình bình hành ABCD , gọi M,N,P,Q lần lượt là trung điểm của AB,BC,CD,DA.
a, Chứng minh MN=PQ
b, Chứng minh MNPQ là hình bình hành
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=8abc+4(ab+bc+ca)+2(a+b+c)+1�=8���+4(��+��+��)+2(�+�+�)+1
A = 8abc + 4ab + 4bc + 4ca + 2a + 2b + 2c + 1
A=(8abc+4ab)+(4bc+2b)+(4ca+2a)+(2c+1)�=(8���+4��)+(4��+2�)+(4��+2�)+(2�+1)
A=4ab(2c+1)+2b(2c+1)+2a(2c+1)+(2c+1)�=4��(2�+1)+2�(2�+1)+2�(2�+1)+(2�+1)
A=(2c+1)(4ab+2a+2b+1)�=(2�+1)(4��+2�+2�+1)
A=(2c+1)[2a(2b+1)+(2b+1)]�=(2�+1)[2�(2�+1)+(2�+1)]
A=(2a+1)(2b+1)(2c+1)
bạn bấm vào dấu ... dưới bài viết, nhấp vào cập nhật rồi chỉnh sửa lại nhé
\(x^4+x^3y-4x-4y\) (sửa \(x^3\rightarrow x^4\))
\(=x^3\left(x+y\right)-4\left(x+y\right)\)
\(=\left(x+y\right)\left(x^3-4\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)-4\left(x+y\right)=\)
\(=\left(x+y\right)\left(x^2-xy+y^2-4\right)\)
\(x^4+6x^2y+9y^2-1\)
\(=\left(x^2+3y\right)^2-1\)
\(=\left(x^2+3y+1\right)\left(x^2+3y-1\right)\)
Vì ABCD là hbh nên => AB=DC, AD=BC
có M là tđ của AB, P là trung điểm của DC mà AB=DC=>MB=DP (1)
N là tđ của BC, Q là tđ của AD mà AD=BC=> QD=BN (2)
Có góc QDB=góc MBN (ABCD là hbh) (3)
(1),(2),(3)=> tam giác MPN=tam giác QDP=>QP=MN
tương tự, cm QM=PN=> tứ giác QMNP có QM=BN, QP=MN => Tứ giác MNPQ là hbh( có hai cặp cạnh đối bằng nhau)