cho tam giác ABC vuông tại A (AB<AC).Trên đường cao AH lấy điểm E sao cho AE=BH.Vẽ EF//BC(F thuộc AC)
Cmr:1/EF^2 = 1/AF^2 + 1/AC^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi AD, BE, CF là ba đường cao của tam giác ABC cắt nhau tại H
1. Theo định lý Pythagoras, ta có: \(AB^2+HC^2=\left(AD^2+DB^2\right)+\left(HD^2+DC^2\right)=\left(AD^2+DC^2\right)+\left(DB^2+HD^2\right)=AC^2+HB^2\)(1)
\(BC^2+HA^2=\left(BE^2+EC^2\right)+\left(AE^2+HE^2\right)=\left(BE^2+AE^2\right)+\left(EC^2+HE^2\right)=AB^2+HC^2\)(2)
Từ (1) và (2) suy ra \(AB^2+HC^2=AC^2+HB^2=BC^2+HA^2\)(đpcm)
2. Ta có: \(BC.HA=BC.AD-BC.HD=2S-2S_{BHC}\)
Tương tự: \(AB.HC=2S-2S_{AHB}\); \(CA.HB=2S-2S_{AHC}\)
Suy ra \(AB.HC+BC.HA+CA.HB=6S-2S=4S\)(đpcm)
a. Ta có:
góc AMB=90o (góc nội tiếp chắn nửa đtròn) hay AMH=90o
góc HCA=90o (gt)
⇒AMB+ACH=180o
⇒Tứ giác AMHC nội tiếp đtròn đkính AH
b) ΔOAM đều (vì OA=AM=MA=R) ⇒góc A=60o
Ta có: BMI=A(=1/2 sđMB) hay HMI=A
MHI=A (tứ giác AMHC nt)
Suy ra: HMI=MHI=A=60o
⇒ΔMIH đều
\(\frac{\sin^4\alpha-\cos^2\alpha+2\cos^4\alpha-\cos^6\alpha}{\cos^4\alpha-\sin^2\alpha+2\sin^4\alpha-\sin^6\alpha}=\frac{\sin^4\alpha-\cos^2\alpha\left(1-\cos^2\alpha\right)^2}{\cos^4\alpha-\sin^2\alpha\left(1-\sin^2\alpha\right)^2}\)
\(=\tan^4\alpha.\frac{1-\cos^2\alpha}{1-\sin^2\alpha}=\tan^6\alpha\)
Gợi ý này: Đặt \(a=x^3,b=y^3,c=z^3\) rồi áp dụng bất đẳng thức này \(x^3+y^3\ge xy\left(x+y\right)\) rồi biến đổi 1 chút nx là ra