\(7\sqrt[3]{8}\)
\(8\sqrt[3]{7}\)
so sánh nhé !!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(=\sqrt{2}.\left(\sqrt{7}+\sqrt{8}\right)\sqrt{5-\sqrt{3}\sqrt{7}}\)
\(=\left(\sqrt{7}+\sqrt{8}\right)\sqrt{3-2\sqrt{3}.\sqrt{7}+7}\)
\(=\left(\sqrt{7}+\sqrt{8}\right)\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)
\(=\left(\sqrt{7}+\sqrt{8}\right)\left(\sqrt{7}-\sqrt{3}\right)\)
Rồi nhân ra. bạn làm tiếp nhé. Tuy nhiên minh nghĩ bạn bị nhầm đề. là \(\sqrt{6}\) chứ không phải căn 16
b. \(=\frac{5\left(\sqrt{21}+1\right)}{21-16}+\frac{\sqrt{3}.\sqrt{7}\left(\sqrt{3}-\sqrt{7}\right)}{-\left(\sqrt{3}-\sqrt{7}\right)}\)
\(=\sqrt{21}+4-\sqrt{21}=4\)
\(x^4+9x^2=0\)
\(\Leftrightarrow x^2\left(x^2+9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x^2+9=0\end{cases}}\)
\(\Leftrightarrow x^2=0\Rightarrow x=0\) vì \(x^2+9\ge9>0\forall x\)
=.= hk tốt!!
#)Giải :
\(x^4+9x^2=0\left(1\right)\)
\(\Leftrightarrow x^2\left(x^2+9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x^2+9=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2+9=0\left(2\right)\end{cases}}\)
Có \(x^2\ge0\forall x\)
Mâu thuẫn với (2)
=> (2) vô nghiệm
Vậy .........
P/s Nguồn : Giải phương trình x^4 + 9x^2=0 - Thu Hang - H7https://h7.net/hoi-dap/toan-9/giai-phuong-trinh-x-4-9x-2-0-faq299413.html
Bài này trục căn thức ở mẫu thì được chứ không rút gọn được. Làm sao thì kết quả vẫn là 1 số phức tạp thôi
\(\sqrt{14+6\sqrt{5}}-\sqrt{\frac{\sqrt{5}-2}{\sqrt{5}+2}}=5\)
\(\sqrt{14+6\sqrt{5}}-\sqrt{\frac{\sqrt{5-2}}{\sqrt{5}+2}}=5\)
Ta có: \(x^2-4x+1=0\) (1)
Nếu x=0 thay vào phương trình (1) thấy 1=0 vô lí
=> x khác 0
Chia cả hai vế phương trình 1 cho x ta được phương trình:
\(x-4+\frac{1}{x}=0\Leftrightarrow x+\frac{1}{x}=4\)
=> \(\left(x+\frac{1}{x}\right)^2=4^2\Leftrightarrow x^2+\frac{1}{x^2}+2=16\Leftrightarrow x^2+\frac{1}{x^2}=14\)
\(\left(x+\frac{1}{x}\right)\left(x^2+\frac{1}{x^2}\right)=x^3+\frac{1}{x^3}+x+\frac{1}{x}\)
=> \(4.14=x^3+\frac{1}{x^3}+4\Rightarrow x^3+\frac{1}{x^3}=52\)
Thay vào tính đc P
Bài giải :
Ta có :
\(7^3\sqrt{8}=9701505038\)
\(8^3\sqrt{7}=1354624671\)
Vì 9701505038 > 1354624671
=> \(7^3\sqrt{8}>8^3\sqrt{7}\)
Vậy .....
\(7\sqrt[3]{8}=7.2=14\)
\(8\sqrt[3]{7}\approx15,303\)
Vì \(15,303>14\)nên \(8\sqrt[3]{7}>7\sqrt[3]{8}\)