K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(ĐK\sqrt{x-1}\ge0\Rightarrow x-1\ge0\Rightarrow x\ge1\)

Đặt \(\sqrt{x-1}-2=t\Rightarrow\sqrt{x-1}-3=t-1\)

\(|t|-|t-1|=1\)

\(th1:t-1+t=1\Rightarrow2t-1=1\Rightarrow2t=2\Rightarrow t=1\)

\(t=1\Rightarrow\sqrt{x-1}-2=1\Rightarrow\sqrt{x-1}=3\Rightarrow x-1=9\Rightarrow x=8\)

\(th2:-t-t+1=1\Rightarrow-2t=0\Rightarrow t=0\)

\(t=0\Rightarrow\sqrt{x-1}-2=0\Rightarrow\sqrt{x-1}=2\Rightarrow x-1=4\Rightarrow x=5\)

Vậy x = 8 : x = 5

29 tháng 6 2019

ĐK: a,b>0 , a khác b

\(A=\left[\frac{\sqrt{a}-\sqrt{b}}{\sqrt{b}}.\frac{\sqrt{a}+\sqrt{b}}{\sqrt{b}}\right]:\left(\frac{a^2-b^2}{ab}\right)\)

\(=\frac{a-b}{b}:\frac{\left(a-b\right)\left(a+b\right)}{ab}=\frac{a-b}{b}.\frac{ab}{\left(a-b\right)\left(a+b\right)}=\frac{a}{a+b}\)

Với b=1, A=2 ta có: 

\(\frac{a}{a+1}=2\Leftrightarrow a=2a+2\Leftrightarrow a=-2\) loại 

vậy không tồn tại a để A=2 b=1

29 tháng 6 2019

\(A=\left[\left(\sqrt{\frac{a}{b}}-1\right).\left(\sqrt{\frac{a}{b}}+1\right)\right]:\left(\frac{a}{b}-\frac{b}{a}\right)\)

\(A=\left[\left(\sqrt{\frac{a}{b}}\right)^2-1\right]:\left(\frac{a^2}{ab}-\frac{b^2}{ab}\right)\)

\(A=\left(\frac{a}{b}-1\right):\left[\frac{\left(a-b\right)\left(a+b\right)}{ab}\right]\)

\(A=\left(\frac{a-b}{b}\right).\left[\frac{ab}{\left(a-b\right)\left(a+b\right)}\right]\)

\(A=\frac{a}{a+b}\)

29 tháng 6 2019

\(E=\sqrt{x+4\sqrt{x-2}+2}+\sqrt{x-4\sqrt{x-2}+2}\)

\(=\sqrt{x-2+4\sqrt{x-2}+4}+\sqrt{x-2-4\sqrt{x-2}+4}\)

\(=\sqrt{\left(\sqrt{x-2}+2\right)^2}+\sqrt{\left(\sqrt{x-2}-2\right)^2}\)

\(=|\sqrt{x-2}+2|+|\sqrt{x-2}-2|\)

\(...\)

Ta có 

\(10^2=6^2+8^2\) 

\(\Rightarrow ab^2=ac^2+bc^2\)

Định lý pitago đảo

\(\Rightarrow\Delta abc\perp a\)

29 tháng 6 2019

Gọi O là tâm đường tròn bàng tiếp trong góc A.Ta có:

\(S_{OAC}+S_{OAB}-S_{OBC}=S_{ABC}\Rightarrow b.r_a+c.r_a-a.r_a=2S\Rightarrow S=\frac{r_a\left(b+c-a\right)}{2}=r_a\left(p-a\right).\)(p là nửa chu vi tam giác ABC)

Cm tương tự: \(S=r_a\left(p-a\right)=r_b\left(p-b\right)=r_c\left(p-c\right)=p.r\)

\(\Rightarrow\frac{S}{r_a}+\frac{S}{r_b}+\frac{S}{r_c}=p-a+p-b+p-c=3p-2p=p=\frac{S}{r}\Rightarrow\frac{1}{r}=\frac{1}{r_a}+\frac{1}{r_b}+\frac{1}{r_c}\)(đpcm)

29 tháng 6 2019

Đặt BC=a, AC=b, AB=c

 \(P=\frac{a+b+c}{2}\)

S là diện tích của tam giác ABC

Ta có công thức tính bán kính của các đường tròn bàng tiếp:

Tại góc A: \(r_a=\frac{S}{P-a}\)

Tại góc B: \(r_b=\frac{S}{P-b}\)

Tại góc C: \(r_c=\frac{S}{P-c}\)

Công thức tính bán kính đường tròn nội tiếp tam giác ABC:

\(r=\frac{S}{P}\)

=> \(\frac{1}{r_a}+\frac{1}{r_b}+\frac{1}{r_c}=\frac{P-a}{S}+\frac{P-b}{S}+\frac{P-c}{S}=\frac{3P}{S}-\frac{a+b+c}{S}\)

\(=\frac{3P}{S}-\frac{2P}{S}=\frac{P}{S}=\frac{1}{r}\)

29 tháng 6 2019

Gọi I là tâm đường tròn bàng tiếp góc A của tam giác ABC

Ta có:

SABC=SABI+SACI−SBIC
          
=Rb/2 + Rc/2 − Ra/ 2

        =R. (b+c−a/2)

        =R(p−a)

=> R = S/(p-a) (đpcm)