K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2020

           Bài làm :

1)

Xét 2 ∆ : ∆NAE và ∆NCM có :

+ NA = NC ( Vì N là trung điểm AC )

+ Góc ANE = Góc CNM ( 2 góc đối đỉnh )

+ MN = NE ( Giả thiết )

=> ∆NAE = ∆NCM ( c.g.c)

2)

∆NAE = ∆NCM ( c.g.c) (Chứng minh trên)

=> Góc NAE = Góc NCM

Mà 2 góc này ở vị trí so le trong

=> AE // MC

=> AE // BC

Cũng từ việc chứng minh được ∆NAE = ∆NCM ( c.g.c) ; ta có :

AE = CM

Mà CM = MB = 1/2BC => AE = BM

3)

Ta có :

+ AE = BM ( Chứng minh trên )

+ AE // BM ( Chứng minh trên )

=> Tứ giác AEBM là hình bình hành vì có 2 cặp cạnh đối song song và bằng nhau

=> Các đường chéo cắt nhau tại trung điểm mối đường

Theo đề bài : K là trung điểm AM => K là trung điểm BE

=> 3 điểm B,K,E thẳng hàng

10 tháng 12 2020

              Bài làm :

Ta có :

\(9^7+81^4-27^5\)

\(=\left(3^2\right)^7+\left(3^4\right)^4-\left(3^3\right)^5\)

\(=3^{14}+3^{16}-3^{15}\)

\(=3^{14}\left(1+3^2-3\right)\)

\(=3^{14}.7⋮7\)

=> Điều phải chứng minh