Cho tam giác ABC vuông tại A, trung tuyến AM. Gọi I là trung điểm AC vẽ Ax song song BC. MI cắt Ax tại D
a/ Chứng minh ADCM là hình thoi.
b/ Gọi J là trung điểm AM. Chứng minh B, J, D thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐẶt x+1/x = m
suy ra x2+1/x2=m2-2
Vậy m2-2+9/2m+7=0
2m2+9m+10=0
(2m2+4m) +(5m+10)=0
2m(m+2)+5(m+2)=0
\(\Leftrightarrow\orbr{\begin{cases}m+2=0\\2m+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=-2\\m=\frac{-5}{2}\end{cases}}\)
Với m=-2
x+1/x=-2 hay x2+2x+1=0
x=-1
Với m=-5/2 làm tương tự
Lời giải:
Tập xác định của phương trình
Sử dụng tính chất tỉ lệ thức, có thể biến đổi phương trình như sau
Lời giải thu được
\(\frac{x+2012}{2}+\frac{x+2010}{3}+\frac{x+2011}{5}=\frac{x}{1008}+\frac{x-2}{1009}+\frac{x+1}{2015}\)
\(\Leftrightarrow\frac{x+2012}{2}+\frac{x+2010}{3}+\frac{x+2011}{5}-\frac{x}{1008}-\frac{x-2}{1009}-\frac{x+1}{2015}=0\)
\(\Leftrightarrow\frac{x+2012}{2}+2+\frac{x+2010}{3}+2+\frac{x+2011}{5}+1-\frac{x}{1008}-2-\frac{x-2}{1009}-2-\frac{x+1}{2015}-1=0\)
\(\Leftrightarrow\frac{x+2016}{2}+\frac{x+2016}{3}+\frac{x+2016}{5}-\frac{x+2016}{1008}-\frac{x+2016}{1009}-\frac{x+2016}{2015}=0\)
\(\Leftrightarrow\left(x+2016\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{5}-\frac{1}{1008}-\frac{1}{1009}-\frac{1}{2015}\right)=0\)
Mà \(\frac{1}{2}+\frac{1}{3}+\frac{1}{5}-\frac{1}{1008}-\frac{1}{1009}-\frac{1}{2015}\ne0\)
\(\Leftrightarrow x+2016=0\)
\(\Leftrightarrow x=-2016\)
Vậy tập nghiệm của phương trình là \(S=\left\{-2016\right\}\)
A B C K H I
a) Xét hai Δvuông HBC và ΔKCB
∠BCH = ∠CBK (Δ ABC cân tại A) BC cạnh chung
⇒ ΔHBC = ΔKCB (cạnh huyền, góc nhọn)
⇒ CH = BK
b) Ta có: AB = AC (ΔABC cân tại A) và CH = BK
- Quảng cáo -
AK = AB – BK và AH = AC – CH ⇒ AK = AH
⇒ AK/AB = AH/AC ⇒ KH//BC
c) Kẻ đường cao AI của Δ ABC và xét Δ IAC
ΔHBC có ∠ACI = ∠BCH
⇒ ΔIAC ∽ ΔHBC(g.g) ⇒ AC/BC = IC/HC ⇒ HC = IC.BC / AC = a2/2b
Ta có : \(KH//BC\Rightarrow\frac{KH}{BC}=\frac{AH}{AC}\)
\(\Rightarrow KH=\frac{AH.BC}{AC}=\frac{\left(AC-HC\right).BC}{AC}\)
\(\Rightarrow KH=\left(b-\frac{a^2}{2b}\right)\frac{a}{b}=a-\frac{a^3}{2b^2}\)
\(x^2+\frac{1}{x^2}+16y^2+\frac{1}{y^2}-10=0\)
<=>\(\left(x^2-2+\frac{1}{x^2}\right)+\left(16y^2-8+\frac{1}{y^2}\right)=0\)
<=>\(\left[x^2-2\cdot x\cdot\frac{1}{x}+\left(\frac{1}{x}\right)^2\right]+\left[\left(4y\right)^2-2\cdot4y\cdot\frac{1}{y}+\left(\frac{1}{y}\right)^2\right]=0\)
<=>\(\left(x-\frac{1}{x}\right)^2+\left(4y-\frac{1}{y}\right)^2=0\)
Mà \(\left(x-\frac{1}{x}\right)^2;\left(4y-\frac{1}{y}\right)^2>hoac=0\)
=>\(\hept{\begin{cases}\left(x-\frac{1}{x}\right)^2=0\\\left(4y-\frac{1}{y}\right)^2=0\end{cases}}\)
<=>\(\hept{\begin{cases}x-\frac{1}{x}=0\\4y-\frac{1}{y}=0\end{cases}}\)
đoạn này bạn tự giải tiếp
Vậy x=1 và y=1/2