Cho nửa đường tròn tâm \(O\), đường kính \(AB\) và tia tiếp tuyến \(Ax\) cùng phía với nửa đường tròn đối với \(AB\). Từ điểm \(M\) trên \(Ax\) kẻ tiếp tuyến thứ hai \(MC\) với nửa đường tròn (\(C\) là tiếp điểm). Kẻ \(CH\) vuông góc với \(AB\) \(\left(H\in AB\right)\). Chứng minh rằng:
\(a\)) \(\widehat{ACB}=90^o\)
\(b\)) \(BC//OM\)
\(c\)) \(MB\) đi qua trung điểm của đoạn thẳng \(CH\).
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.