K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2023

Xét Δ AQN và Δ MBN có :

\(\widehat{QAM}=\widehat{MBN}=90^o\)

\(AM=BM\) (M là trung điểm AB)

\(AQ=BN\) (Q;N là trung điểm AD;BC và AD=BC)

⇒ Δ AQN và Δ MBN (cạnh, góc, cạnh)

\(\Rightarrow QM=MN\left(1\right)\)

Chứng minh tương tự :

- Δ AQN và Δ QDP (cạnh, góc, cạnh) \(\Rightarrow QM=QP\left(2\right)\)

- Δ PNC và Δ QDP (cạnh, góc, cạnh) \(\Rightarrow PN=QP\left(3\right)\)

- Δ PNC và Δ MBN  (cạnh, góc, cạnh) \(\Rightarrow PN=MN\left(4\right)\)

\(\left(1\right);\left(2\right);\left(3\right);\left(4\right)\Rightarrow QM=MN=PN=QP\)

⇒ Tứ giác MNQP là hình thoi (dpcm)

26 tháng 8 2023

Gọi 2 số tự nhiên đó là: a; a-1\(\left(a\inℕ^∗\right)\)

Theo đề bài ta có:

\(a^2-\left(a-1\right)^2=31\)

\(\Leftrightarrow a^2-\left(a^2-2a+1\right)=31\)

\(\Leftrightarrow a^2-a^2+2a-1=31\)

\(\Leftrightarrow2a=31+1\)

\(\Leftrightarrow a=\dfrac{32}{2}=16\Rightarrow a-1=16=16-1=15\)

Vậy hai số đó là: \(15;16\)

28 tháng 8 2023

Gọi hai số tự nhiên đó là a , a - 1 (a N*)

Theo đề, ta có : a2(a1)2=31�2−(�−1)2=31

a2(a22a+1)=31⇔�2−(�2−2�+1)=31

a2a2+2a1=31⇔�2−�2+2�−1=31

2a=31+1⇔2�=31+1

a=\(\dfrac{32}{2}\)

=16
⇔�=322=16
 a1=161=15⇒�−1=16−1=15

Vậy : Hai số đó là 15; 16

28 tháng 8 2023

thanh niên ko chịu làm bài tập mà lên đây hỏi à :))

26 tháng 8 2023

Thì bạn chỉ cần trả lời đúng,trình bày đẹp,dễ hiểu thôi và chăm chỉ trả lời

26 tháng 8 2023

Mấy cái bạn nói mình đều làm rồi có được đâu

 

25 tháng 8 2023

phân tích các số sau ra thừa số nguyên tố 48;56;84;105;360

 

25 tháng 8 2023

Xét \(P=x^2+y^2+2x\left(y-1\right)+2y+1\) 

\(P=x^2+y^2+2xy-2x+2y+1\)

+) Nếu \(y>x\) thì \(2y-2x+1>0\). Do đó \(P>\left(x+y\right)^2\). Hơn nữa:

\(P< x^2+y^2+1+2xy+2x+2y\) \(=\left(x+y+1\right)^2\)

suy ra \(\left(x+y\right)^2< P< \left(x+y+1\right)^2\), vô lí vì P là SCP.

+) Nếu \(x>y\) thì \(2y-2x+1< 0\) nên \(P< \left(x+y\right)^2\)

Hơn nữa \(P>x^2+y^2+1+2xy-2x-2y\) \(=\left(x+y-1\right)^2\)

Suy ra \(\left(x+y-1\right)^2< P< \left(x+y\right)^2\), vô lí vì P là SCP.

Vậy \(x=y\) (đpcm)

(Cơ mà nếu thay \(x=y\) vào P thì \(P=4x^2+1\) lại không phải là SCP đâu)

 

25 tháng 8 2023

  Để \(P\left(x\right)=x^4+ax+b⋮x^2-1\) thì \(P\left(x\right)=\left(x^2-1\right)Q\left(x\right)=\left(x-1\right)\left(x+1\right)Q\left(x\right)\) với \(Q\left(x\right)\) là đa thức có bậc là 2.

 Suy ra \(P\left(-1\right)=P\left(1\right)=0\)

 \(\Rightarrow\left\{{}\begin{matrix}\left(-1\right)^4+a.\left(-1\right)^3+b=0\\1^4+a.1^3+b=0\end{matrix}\right.\)

 \(\Leftrightarrow\left\{{}\begin{matrix}b-a=-1\\a+b=-1\end{matrix}\right.\)

 \(\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=-1\end{matrix}\right.\)

 Với \(\left(a,b\right)=\left(0;-1\right)\) thì \(P\left(x\right)=x^4-1=\left(x^2-1\right)\left(x^2+1\right)\) thỏa mãn ycbt. Vậy \(\left(a,b\right)=\left(0;-1\right)\)

AH
Akai Haruma
Giáo viên
27 tháng 8 2023

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.

25 tháng 8 2023

bạn thử sang web khác đi

25 tháng 8 2023

de vai

25 tháng 8 2023

a) \(x^2+2x+1=\left(x+1\right)^2\)

b) \(x^2+8x+16=\left(x+4\right)^2\)

c) \(x^2+6x+9=\left(x+3\right)^2\)

d) \(4x^2+4x+1=\left(2x+1\right)^2\)

e) \(36+x^2-12x=x^2-12x+36=\left(x-6\right)^2\)

f) \(4x^2+12x+9=\left(2x+3\right)^2\)

g) \(x^4+81+18x^2=x^4+18x^2+81=\left(x^2+9\right)^2\)

h) \(9x^2+30xy+25y^2=\left(3x+5y\right)^2\)

25 tháng 8 2023

a, \(x^2\) + 2\(x\) + 1 = (\(x\) + 1)2

b, \(x^2\) + 8\(x\) + 16 = (\(x\) + 4)2

c, \(x^2\) + 6\(x\) + 9 = (\(x\) + 3)2

d, 4\(x^2\) + 4\(x\) + 1 = (2\(x\) + 1)2