Cho tam giác MNP có M=N .Kẻ ME là phân giác của góc M (E ∈ NP ),kẻ NF là phân giác của N(F ∈ MP) .Chứng minh ME=NF.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi A là biến cố"Số xuất hiện trên thẻ là số chính phương"
=>A={1;4;9;16;25;36}
=>n(A)=6
=>\(P\left(A\right)=\dfrac{6}{48}=\dfrac{1}{8}\)
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
b: Xét ΔMAC và ΔMDB có
MA=MD
\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)
MC=MB
Do đó: ΔMAC=ΔMDB
=>AC=DB
Ta có: ΔMAC=ΔMDB
=>\(\widehat{MAC}=\widehat{MDB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AC//BD
c: Xét ΔADC có
CM,DN là các đường trung tuyến
CM cắt DN tại I
Do đó: I là trọng tâm của ΔADC
Xét ΔADC có
I là trọng tâm của ΔADC
DN là đường trung tuyến và CM là đường trung tuyến
Do đó: DI=2IN và \(CI=\dfrac{2}{3}CM=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot BC=\dfrac{1}{3}\cdot BC\)
a: Ta có: ΔABC vuông tại A
=>\(\widehat{ACB}+\widehat{ABC}=90^0\)
=>\(\widehat{ACB}=90^0-50^0=40^0\)
b: Xét ΔCAD và ΔCED có
CA=CE
\(\widehat{ACD}=\widehat{ECD}\)
CD chung
Do đó: ΔCAD=ΔCED
=>DA=DE
c: Ta có: ΔCAD=ΔCED
=>\(\widehat{CAD}=\widehat{CED}\)
mà \(\widehat{CAD}=90^0\)
nên \(\widehat{CED}=90^0\)
=>DE\(\perp\)CB
Xét ΔDAF vuông tại A và ΔDEB vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDB}\)
Do đó: ΔDAF=ΔDEB
=>DF=DB
=>D nằm trên đường trung trực của BF(1)
Ta có: IF=IB
=>I nằm trên đường trung trực của BF(2)
Ta có: CA+AF=CF
CE+EB=CB
mà CA=CE và AF=EB(ΔDAF=ΔDEB)
nên CF=CB
=>C nằm trên đường trung trực của BF(3)
Từ (1),(2),(3) suy ra C,D,I thẳng hàng
a.
Áp dụng tính chất tổng 3 góc trong tam giác:
\(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^0\)
\(\Leftrightarrow50^0+\widehat{ACB}+90^0=180^0\)
\(\Leftrightarrow\widehat{ACB}=40^0\)
b.
Xét hai tam giác DCA và DCE có:
\(\left\{{}\begin{matrix}CA=CE\left(gt\right)\\\widehat{DCA}=\widehat{DCE}\left(\text{CD là phân giác}\right)\\CD\text{ là cạnh chung}\end{matrix}\right.\)
\(\Rightarrow\Delta DCA=\Delta DCE\left(c.g.c\right)\)
\(\Rightarrow DE=DA\)
c.
Từ câu b, do \(\Delta DCA=\Delta DCE\Rightarrow\widehat{DEC}=\widehat{DAC}=90^0\)
Xét hai tam giác CAB và CEF có:
\(\left\{{}\begin{matrix}\widehat{CAB}=\widehat{CEF}=90^0\\CA=CE\left(gt\right)\\\widehat{ACE}-chung\end{matrix}\right.\) \(\Rightarrow\Delta CAB=\Delta CEF\left(g.c.g\right)\)
\(\Rightarrow CB=CF\)
\(\Rightarrow\Delta CBF\) cân tại C
Mà I là trung điểm BF \(\Rightarrow CI\) là trung tuyến nên CI đồng thời là phân giác \(\widehat{ACB}\)
\(\Rightarrow\) Đường thẳng CI trùng đường thẳng AD hay C, D, I thẳng hàng
Bài 2. Tính giá trị của biểu thức:
a) P(3) = 3.3² - 5.3 - 1
= 27 - 16
= 11
P(-3) = 3.(-3)² - 5.(-3) - 1
= 27 + 15 - 1
= 41
b) |x| = 2
⇒ x = 2 hoặc x = -2
Q(2) = 4.2³ - 8.2 + 7
= 32 - 16 + 7
= 23
Q(-2) = 4.(-2)³ - 8.(-2) + 7
= -32 + 16 + 7
= -9
c) Không có giá trị của x nên không tính được
Đa thức một biến
Bài 1.
a) *) 3x⁵ có:
- Hệ số: 3
- Bậc: 5
*) 1/3 x⁷ có:
- Hệ số: 1/3
- Bậc: 7
*) 4x có:
- Hệ số: 4
- Bậc: 1
*) -x³ có:
- Hệ số: -1
- Bậc: 3
b) *) -12x⁹ có:
- Hệ số: -12
- Bậc: 9
*) x³/7 có:
- Hệ số: 1/7
- Bậc: 3
*) -6x có:
- Hệ số: -6
- Bậc: 1
*) 4/19 x³ có:
- Hệ số: 4/19
- Bậc: 3
x : y : z = 3 : 6 : 5
⇒ x/3 = y/6 = z/5
⇒ x²/9 = y²/36 = z²/25
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x²/9 = y²/36 = z²/25 = (x² + y² - z²)/(9 + 36 - 25) = 80/20 = 4
x²/9 = 4 ⇒ x² = 4.9 = 36 ⇒ x = 6; x = -6
*) x = 6
⇒ y = 6.6 : 3 = 12
z = 6.5 : 3 = 10
*) x = -6
⇒ y = -6.6 : 3 = -12
z = -6.5 : 3 = -10
Vậy x = 6; y = 12; z = 10
Hoặc x = -6; y = -12; z = -10
a) Khi rút 1 thẻ thì thẻ đó có thể được đánh số từ 1 đến 12
A = {1; 2; 3; ...; 12}
b) Số xuất hiện trên thẻ là hợp số khi thẻ rút ra được đánh số: 4; 6; 8; 9; 10; 12 nên các kết quả thuận lợi là: 4; 6; 8; 9; 10; 12
c) Số các kết quả thuận lợi cho biến cố trên là 6
Tỉ số của số các kết quả thuận lợi và số phần tử của A là:
6/12 = 1/2
Tập hợp gồm các kết quả có thể xảy ra đối với số xuất hiện trên thẻ được rút ra là: B = {1; 2; 3; …; 11; 12}.
Số phần tử của tập hợp B là: 12 phần tử.
Có 8 kết quả thuận lợi cho biến cố “Số xuất hiện trên thẻ được rút ra là số không chia hết cho 3” là: 1, 2, 4, 5, 7, 8, 10, 11.
Vì thế, xác suất của biến cố “Số xuất hiện trên thẻ được rút ra là số không chia hết cho 3” là: 812=23812=23.
Xét ΔMNP có \(\widehat{PMN}=\widehat{PNM}\)
nên ΔPMN cân tại P
Ta có: \(\widehat{PME}=\dfrac{\widehat{PMN}}{2}\)
\(\widehat{PNF}=\dfrac{\widehat{PNM}}{2}\)
mà \(\widehat{PMN}=\widehat{PNM}\)
nên \(\widehat{PME}=\widehat{PNF}\)
Xét ΔPME và ΔPNF có
\(\widehat{PME}=\widehat{PNF}\)
PM=PN
\(\widehat{MPE}\) chung
Do đó: ΔPME=ΔPNF
=>ME=NF