K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\(b)\frac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}\left(a,b\ge0;a,b\ne1\right)\)\)

\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)+\left(a\sqrt{b}-b\sqrt{a}\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab+1}\right)}\)\)

\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)+\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\)\)

\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{ab}+1\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\)\)

\(\(=\frac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{ab}-1\right)}\left(a,b\ge0.a,b\ne1\right)\)\)

_Minh ngụy_

\(\(c)\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)\)( tự ghi điều kiện )

\(\(=\frac{x\sqrt{x}+y\sqrt{y}-\left(\sqrt{x}-\sqrt{y}\right)^2.\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)\)

\(\(=\frac{x\sqrt{x}+y\sqrt{y}-\left(x\sqrt{x}+x\sqrt{y}-2x\sqrt{y}-2y\sqrt{x}+y\sqrt{x}+y\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)\)

\(\(=\frac{x\sqrt{y}+y\sqrt{x}}{\sqrt{x}+\sqrt{y}}\)\)( phá ngoặc và tính )

\(\(=\frac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}=\sqrt{xy}\)\)

_Minh ngụy_

\(P=\sqrt{\frac{\left(x^2-3\right)^2+12x^2}{x^2}}+\sqrt{\left(x+2\right)^2-8x}\) Đk \(x\ne0\)

\(=\frac{\sqrt{x^4-6x^2+9+12x^2}}{\sqrt{x^2}}+\sqrt{x^2+4x+4-8x}\)

\(=\frac{\sqrt{x^4+6x^2+9}}{\sqrt{x^2}}+\sqrt{x^2-4x+4}\)

\(=\frac{\sqrt{\left(x^2+3\right)^2}}{\sqrt{x^2}}+\sqrt{\left(x-2\right)^2}\)

\(=\frac{x^2+3}{x}+x-2\)

\(=\frac{x^2+3+x\left(x-2\right)}{x}=\frac{x^2+3+x^2-2x}{x}\)

\(=\frac{2x^2-2x+3}{x}\)

b, \(P=\frac{2x^2-2x+3}{x}=2x-2+\frac{3}{x}\)

Để \(P\in z\)thì \(x\inƯ\left(3\right)=\left(-3;-1;1;3\right)\)

3 tháng 7 2019

Sửa chút đề nhé , \(\frac{AB}{BC}=\frac{5}{6}\)Mới là đề đúng nha bạn, Giải :

Ta có  \(\Delta ABC\)vuông tại B 

\(\Rightarrow AB^2=AH.AC\)\(\Rightarrow AH=\frac{AB^2}{AC}\)\(\left(1\right)\)

\(BC^2=HC.AC\)\(\Rightarrow HC=\frac{BC^2}{AC}\)\(\left(2\right)\)

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{AH}{HC}=\frac{AB^2}{AC}\div\frac{BC^2}{AC}=\frac{AB^2.AC}{AC.BC^2}=\frac{AB^2}{BC^2}=\frac{5^2}{6^2}=\frac{25}{36}\)

Đặt \(\frac{AH}{HC}=\frac{25}{36}=x\)\(\Rightarrow AH=25x;HC=36x\)

Mà \(BH^2=AH.HC=25x.36x=30^2=900\)

\(\Rightarrow x^2=\frac{900}{25.36}=\frac{900}{900}=1\)\(\Rightarrow\orbr{\begin{cases}x=1\left(tm\right)\\x=-1\left(ktm\right)\end{cases}}\)

\(\Rightarrow AH=25x=25.1=25\)

\(HC=36.x=36.1=36\)

\(KL:AH=25;HC=36\)

3 tháng 7 2019

A C B H 30 ? ?

4 tháng 7 2019

\(A^3=14+3\sqrt[3]{\left(7-\sqrt{50}\right)\left(7+\sqrt{50}\right)}\left(\sqrt[3]{7-\sqrt{50}}+\sqrt[3]{7+\sqrt{50}}\right)\)

\(A^3=14+3\sqrt[3]{49-50}.A\)\(\Leftrightarrow\)\(A^3=14-3A\)

\(\Leftrightarrow\)\(A^3+3A-14=0\)\(\Leftrightarrow\)\(A\left(A^2-4\right)+7\left(A-2\right)=0\)

\(\Leftrightarrow\)\(A\left(A-2\right)\left(A+2\right)+7\left(A-2\right)=0\)

\(\Leftrightarrow\)\(\left(A-2\right)\left(A^2+2A+7\right)=0\)

\(\Leftrightarrow\)\(A=2\) ( do \(A^2+2A+7=\left(A+1\right)^2+6>0\) ) 

3 tháng 7 2019

đề thi học sinh giỏi tỉnh ĐL nha giải giúp mình

4 tháng 7 2019

\(x^2-\left(m-1\right)x+2m-6=0\) (1) 

Để pt (1) có 2 nghiệm phân biệt thì:

\(\Delta=\left(1-m\right)^2-4\left(2m-6\right)=m^2-10m+25=\left(m-5\right)^2>0\)\(\Leftrightarrow\)\(m\ne5\)

\(x_1=\frac{m-1+\left|m-5\right|}{2}\) và \(x_2=\frac{m-1-\left|m-5\right|}{2}\)

Dễ dàng thấy \(x_1>x_2\) nên ta cần tìm m để \(x_1< -2019\)

\(\Leftrightarrow\)\(\frac{m-1+\left|m-5\right|}{2}< -2019\)

\(\Leftrightarrow\)\(\left|m-5\right|< -m-4037\)

\(\Leftrightarrow\)\(\hept{\begin{cases}-m-4037>0\\m^2-10m+25< m^2+8074m+4037^2\end{cases}\Leftrightarrow\hept{\begin{cases}m< -4037\\8084m>25-4037^2\end{cases}}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}m< -4037\\m>\frac{25-4037^2}{8084}\end{cases}\Leftrightarrow\hept{\begin{cases}m< -4037\\m>-2016\end{cases}}}\) ( vô lí ) 

Vậy không có m để pt (1) có ít nhất 1 nghiệm nhỏ hơn -2019 

PS: ko chắc nhé, ai thấy lỗi sai thì ib giúp 

4 tháng 7 2019

\(x^2+2mx-2m+1=0\) (1) 

pt (1) có 2 nghiệm x1, x2 cùng lớn hơn -5 \(\Leftrightarrow\)\(\hept{\begin{cases}\Delta'\ge0\\x_1+5>0\\x_2+5>0\end{cases}\Leftrightarrow\hept{\begin{cases}m^2+2m-1\ge0\left(2\right)\\\left(x_1+5\right)+\left(x_2+5\right)>0\left(3\right)\\\left(x_1+5\right)\left(x_2+5\right)>0\left(4\right)\end{cases}}}\)

(2) \(\Leftrightarrow\)\(\left(m+1\right)^2\ge2\)\(\Leftrightarrow\)\(\orbr{\begin{cases}m\ge\sqrt{2}-1\\m\le-\sqrt{2}-1\end{cases}}\)

Theo Vi-et ta có: \(\hept{\begin{cases}x_1+x_2=-2m\\x_1x_2=1-2m\end{cases}}\)

(3) \(\Leftrightarrow\)\(-2m+10>0\)\(\Leftrightarrow\)\(m< 5\)

(4) \(\Leftrightarrow\)\(1-2m-10m+25>0\)\(\Leftrightarrow\)\(m< \frac{13}{6}\)

Kết hợp các ĐK của m ta suy ra \(\orbr{\begin{cases}m\ge\sqrt{2}-1\\m\le-\sqrt{2}-1\end{cases}}\) hay \(m\ne k\) với \(k\in A\) và \(A=\left(-\sqrt{2}-1;\sqrt{2}-1\right)\)

... 

Với m=3 

\(PT\Leftrightarrow x^2-3x-x+3=0\)

\(\Leftrightarrow x^2-4x+3=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)

Vậy pt có 2 nghiệm x=1, x=3 khi m=3

3 tháng 7 2019

ta có  \(x^2-mx+m-x\)

=\(x\left(x-m\right)+\left(m-x\right)\)

=\(x\left(x-m\right)-\left(x-m\right)\)

=\(\left(x-m\right)\left(x-1\right)\)

với m=3 thì

\(\left(x-3\right)\left(x-1\right)=0\)

=>\(\hept{\begin{cases}x-3=0\\x-1=0\end{cases}}\)=>\(\hept{\begin{cases}x=3\\x=1\end{cases}}\)

vậy...

bn tự kết luận nhé